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1. INTRODUCTION 

On January 19–21, 2021, 173 researchers convened virtually to discuss Artificial Intelligence in Robust 
Engineering and Science (AIRES). This was the second meeting in the AIRES workshop series and 
focused on the digital twin (DT). 

The concept of the DT has become pervasive in engineering since the introduction of the term at the 
beginning of the current millennium. Unsurprisingly, the definition of DT is almost as varied as the 
number of applications put forward in the literature. The workshop did not attempt to reach a consensus 
definition but instead accepted a relatively generic definition of a DT, which serves as a digital 
representation of an engineered or natural system. This broad definition assumes that the objective of a 
DT is to facilitate better decisions—such as enhanced control of the subject system, prognostics, and 
maintenance decisions for engineered systems—or to respond to the current or predicted state of a 
physical system.  

The DT lifecycle can be divided into three phases: design, construction or manufacturing, and operation. 
Depending on the application, these phases have subjective interpretations and different levels of 
importance. An important component of the engineering and science in each of these phases is the ability 
to develop an accurate and computationally tractable system model. For the design phase, the focus tends 
to be on developing and using first-principles models. Machine learning (ML) can be used to develop 
computationally efficient models to span multiple lengths and time scales (e.g., to close turbulence 
models or to develop constitutive models). The construction and manufacturing phase begins with the 
design and adds the inherent uncertainties and imperfections into the model. In turn, the model provides 
the initial input for the operational phase, and the challenge transitions to reliably collecting operational 
data and updating the models. In many cases, this is inherently an AI and ML problem because the model 
must be updated using operational data without the ability to inspect the physical system. This workshop 
focuses on the AI research challenges. 

Again, the DT lifecycle (i.e., design, construction, and operation) must be implemented in a given subject 
domain. As with any system, periodic maintenance and enhancement of the DT ensures its longevity and 
the consistent value addition that it can provide. 

 
2. WORKSHOP ORGANIZATION 

The AIRES 2 workshop included a keynote speaker, eight other invited speakers, and several contributed 
talks. The workshop included attendees with expertise in the foundational aspects of AI and ML as well 
as in the application of AI in a range of disciplines. The talks were organized primarily around three 
themes: 

1. construction of DTs, 
2. application and deployment of DTs, and 
3. techniques to provide assurance. 

The workshop included twelve breakout sessions. Topics were solicited in advance from registered 
attendees, and sessions with sufficient interest—based on an online poll—were included in the workshop. 
Thus, the selection of the breakout topics themselves reflected the research priorities of the participants. 
Workshop participants also had the chance to nominate breakout leads. 
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The breakout session leads were asked to define and address a series of questions for their area and to 
produce a short report. Each report aimed to 

1. record the questions that were identified to guide the breakout discussion, 
2. identify the key challenges that must be addressed in the area, 
3. summarize the state of the art, 
4. identify specific research challenges, and 
5. summarize the impact of successfully addressed research opportunities. 

The breakout session reports are included in APPENDIX A. 

The complete AIRES 2 program, including a list of speakers, their biographies, and the titles of their 
presentations is provided in APPENDIX B. A list of the attendees is included in APPENDIX C. 

 
3. RESEARCH NEEDS FROM AIRES 2 

Although the breakout sessions addressed different aspects of DTs, several consistent themes in the 
research challenges and priorities for DTs emerged and are described below. The six themes below link 
naturally with each other. For example, model construction and continuous learning are naturally 
intertwined, and anomaly detection can never be independent of assurance and robustness requirements. 
The six research challenge themes that emerged in the AIRES 2 workshop are: 

1. Assurance. The most referenced research need identified in the breakout sessions was assurance. 
Assurance for robust and reliable DTs is important in all applications, and the need is not limited to 
safety-critical systems. At an intuitive level, assurance addresses the question of whether an AI is 
making the right decision for the right reason. Assurance is a broad area that includes everything from 
uncertainty quantification (UQ) to causal inference. Within the assurance stack, four areas were 
identified as the highest priorities by workshop attendees: 

a. UQ. Uncertainty is an intrinsic part of both the data and the model, and rigorous bounds must be 
computed to guarantee a robust and reliable DT. It was noted that uncertainties that arise in the 
training phase become model uncertainties during the inference phase. 

b. Validation. Validation of a DT considers the appropriateness of the model and can only be 
considered in the context of the intended application. Validation must be a continuous process 
with the evolving state of the physical system. Any validation process must consider the 
appropriateness of training and inference data, the form of the AI, and the training process.  

c. Robustness. Robustness often refers to how the ML model responds to small changes in the data. 
For example, if the training data is relatively close to the operational data, then the DT should 
return results that are close. Robustness for the DT and AI more generally depends as much on 
the selection of the data and measures of closeness as it does on the model and training. For the 
DT, this must be expanded to include the full workflow, robustness to adversarial attacks, and 
unexpected occurrences in the environment or the data. 

d. Explainability and causal analysis. Explainability focuses on the human-computer interface and 
the ability of an AI or DT to explicitly associate a decision with a specific meaningful correlation 
identified in the data. Causal analysis goes significantly further and attempts to identify the causal 
relationships that underlie the identified correlations. Establishing these causal relationships will 
require the ability to test hypotheses by running experiments on the physical system. 
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2. Model construction with robust and efficient AI and ML to create the DT. The core of the DT is 
a model that is built and updated based on data from the physical system and the environment in 
which it operates. These systems usually include multiple spatial and temporal scales and multimodal 
data involving large quantities, many of which may not be measured directly. Furthermore, the 
process of creating the model naturally includes significant challenges in data reduction, which 
focuses on identifying and representing the information contained in data. Challenges include 
identifying the model form, training data, training process, and the appropriate a priori information 
needed to construct the DT. 

3. Continuous learning. The very nature of the DT requires that the physical system be monitored 
continuously and that this data be used to update the DT to reflect the current state of the system with 
the recognition that the state of the system drifts. Challenges include selecting the data appropriate for 
continuous learning, learning in an online mode in which data can be used only once at the time of 
collection, and being confident that the training algorithms forget when appropriate. 

4. Anomaly detection. Anomaly detection can be described as the ability to identify or predict system 
behaviors or environments that were not part of the data used for designing or training the DT. This 
can include system failures as well as adversarial attacks against the physical system (as opposed to 
adversarial attacks against the training and operation of the DT). This is a critical part of any 
assurance effort but is identified as a separate area here because of the challenge of detecting and 
identifying system states that do not appear in training data.  

5. Codesigned software and hardware ecosystem. There are two aspects to this challenge. First, the 
physical twin must be engineered to interact with the DT. This includes sensor design and placement, 
power management, and incorporating edge-based computational capabilities and control systems that 
can interface with the DT. This also includes designing the capability to deal with robustness and 
resilience issues, including data issues and adversarial attacks that are introduced through a DT. 
Second, the DT itself introduces hardware and software ecosystem challenges, including 
communication and bandwidth challenges, and the challenge of federation when many copies of a 
physical system—each with an individualized DT—are deployed. 

6. Standardization and metrics. The development and deployment of DTs are currently very system 
and application specific. As DTs become common in engineered systems, standard protocols for their 
design, production, deployment, and maintenance will become necessary. In particular, safety issues 
that arise when using DTs will drive a regulatory environment that will require standardization. In 
addition to being necessary for safety and regulatory purposes, standardization and metrics will 
improve interoperability and performance and enable an overall increase in efficiency in the design 
and engineering of DTs. 

Future AIRES workshops will continue to examine the foundation aspect of DTs. Each workshop is 
expected to address one or more of these specific research challenges in addition to looking at the broader 
issues associated with the development and deployment of DTs. 
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APPENDIX A. AIRES 2 WORKSHOP BREAKOUT REPORTS 

Section Title Lead(s) 
A.1 Machine Learning for Robust Digital Twins Nathaniel Trask 
A.2 Requirements and Methods for DT Construction Samrat Chatterjee 
A.3 Time Series Prediction for Digital Twins Frank Liu 
A.4 Robustness and Validation of Model and Digital Twins Deployment David Stracuzzi  

Jenifer Shafer  

A.5 Digital Twins for Real-Time Control Systems Christine Sweeney 
A.6 Methods for Continual and Online Learning for Digital Twins Nurali Virani 
A.7 Constructing Digital Twins using High-Dimensional Data Arvind Mohan 
A.8 Constructing and Using Digital Twins for Anomaly Detection Adi Hanuka 

Jiaxin Zhang 

A.9 Hardware and Software Issues in Edge Computing and Production 
Deployment of Digital Twins 

Ron Oldfield 

A.10 Scaling and Realization of Digital Twins on Cloud-and-HPC Systems Piyush Modi 
A.11 Nuclear Energy: Challenges and Applications of Digital Twins Prashant Jain 
A.12 Digital Twin Certified Additive Manufacturing Aric Hagberg 
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A.1. MACHINE LEARNING FOR ROBUST DIGITAL TWINS  

Chair:  Nathaniel Trask  Sandia National Laboratories (Sandia) 

Participants:  John Emery Sandia 
 Hoang Tran ORNL 
 Patrick Blonigan Sandia 
 Ravi Raveendra ESI Group 
 Sanjay Choudhry NVIDIA 
 Guannan Zhang ORNL 
 David Schmidt University of Massachusetts Amherst 
 Felipe Viana University of Central Florida 
 Zhehui (Jeph) Wang Los Alamos National Laboratory (LANL) 

Introduction: 

Digital twins (DTs) require a digital thread between a physical system and its simulated counterpart, 
which requires fast-forward simulations for the twin to provide predictions of the system and fast data 
assimilation tools to extract an appropriate model for the twin. Both models must be reasonably close to 
real-time to allow online inference. 

Machine learning (ML) tools, and particularly deep learning (DL), have gained attention as potential 
means of supporting both fast partial differential equation (PDE) discretizations and learning models from 
data, owing to their ability to handle high-dimensional data in a relatively black-box manner, with many 
examples in the literature of orders-of-magnitude speedup vs. traditional finite element/finite volume 
techniques. Although these tools form an attractive candidate for the digital thread, robustness guarantees 
and trusted AI are needed to guarantee numerical stability, physical realizability, out-of-distribution 
inference, and accuracy—particularly in the small data limits often encountered in science and 
engineering applications. 

Physics-informed ML (physML) has emerged as a discipline in which the traditional tools from scientific 
computing and numerical analysis may be applied to impart prior physical and mathematical knowledge 
on the learning process. Many techniques seek to regularize a training loss with a PDE residual to 
penalize deviations from prior knowledge. These techniques have provided exciting first examples in 
which ML provides transformative predictions beyond the means currently available in traditional 
numerical techniques.  

Although promising, these techniques lack the mathematical foundations of traditional forward 
simulation, precluding in some cases their application in high-risk/high-consequence engineering 
environments that are particularly relevant to the US Department of Energy (DOE). To serve as a reliable 
digital thread, additional research must establish rigorous guarantees so that data-driven models and fast 
surrogates maintain requisite trust and usability. 

Guiding questions:  

• The extrapolation problem: how do networks perform inference out of training distribution? 

• Incomplete physics: sometimes the model form is only partially known and lacks complete equations. 
How does one parameterize unknown physics and move beyond parameter estimation? 
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• Training/optimization tools specifically for physML: what can be leveraged in science and 
engineering scenarios that have more exploitable structure than classical ML training? 

• Data: small data constraints are the norm for expensive physical systems, which leads to overfitting 
and challenges with generalization. What synthetic/experimental data sets are available in the labs 
that could benefit the community? The lack of open-source data sets and benchmarks makes it 
difficult to reliably establish best practices and the state of the art. 

• Legacy codes and nonintrusive ML: how does one integrate the historical simulation codes that are 
ubiquitous in DOE but not equipped with the automatic differentiation required for many ML 
approaches? 

• How does one move beyond TensorFlow/PyTorch and scale up to the large problems and complex 
geometries representative of DOE problems? How does one incorporate MPI (Message Passing 
Interface) parallelism when the data science industry is focused on the graphics processing unit 
(GPU) and the tensor processing unit? 

• Lack of common frameworks for developing software: how does one mitigate duplicated effort and 
reinventing the wheel? 

Key challenges: 

• How does one guarantee convergence and stability of physics-informed surrogates and move beyond 
eyeball norm predictions? 

• Unlike traditional (e.g., finite element) simulation, deep-learned surrogates lack convergence 
guarantees, which renders mesh refinement studies impossible. Recent approximation theory proves 
that networks are capable of better approximation than finite element/volume/difference codes, but 
can these be provided reliably in practice? 

• Current physics-informed techniques only impose physics by penalty, which leads to predictions with 
on the order of 1%–0.01% mismatch. Although acceptable for some applications, others need this to 
hold to machine precision. There are other issues related to numerical treatment of physics, such as 
how to impose boundary conditions and initial conditions. 

• How can one compare methods and determine the best approach? The standardized benchmarks that 
are ubiquitous in the classical ML world are not available for physML. In other words, what could the 
MNIST (Modified National Institute of Standards and Technology database) of the physML world do 
to allow for clear comparisons of the new methods emerging every day? 

• How are missing physics handled? Many first results in physML have estimated physical parameters, 
but how does one move to problems ubiquitous in multiscale/multiphysics for which closures of 
unknown form must be found from data? Can physical realizability be obtained from models without 
applying dictionary learning? 

State of the art: 

• Currently available physML tools provide robustness in small data limits, which is critical for 
building DTs of engineered systems and improving extrapolation/out-of-distribution inference. 
Current tools are particularly promising/useful for inverse/optimization problems and physics 
discovery beyond forward simulation. 
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• PhysML is a young field, but several methods have emerged: physics-informed neural networks 
(PINNs), data-driven reduced-order models, Kutz’s SINDy (sparse identification of nonlinear 
dynamics) method and related dictionary-based techniques, and operator regression. 

• The roadblocks for these techniques are a lack of trustworthiness regarding guaranteed 
performance—generally, methods require hyperparameter optimization that still needs a human in the 
loop, which is undesirable for DTs. There is also a lack of formal error analysis and means to 
establish accuracy comparable to traditional forward simulation. 

Research opportunities: 

• Research in the past few years has focused on establishing initial proof-of-concept and feasibility of 
physML. In the coming years, there is a major opportunity for establishing broadly adopted 
benchmarks for pursuing more challenging metrics beyond the eyeball norm for physical systems. For 
example, establishing a standard problem could demonstrate how approaches converge with respect 
to data and architecture size and provide higher-order metrics of physically relevant statistics 
(e. g., demonstrating for turbulence—not just mean velocity and energy spectra but two-point 
statistics). 

• Common platforms are necessary for establishing physics-informed learning best practices, so that 
physML can move beyond academic/hero problems and heuristics to obtain well-understood 
workflows applicable in industrial settings. 

• Leverage broad opportunities to apply the design principles and expertise related to traditional 
numerical analysis and approximation theory. For example, most PINN approaches apply point 
collocation PDE residuals, while more recent work applies more advanced PDE discretization 
concepts. Mathematicians have been establishing the approximation theory properties of deep 
networks—can these be realized in practical settings? Many of these skill sets are ubiquitous 
throughout DOE, and many opportunities exist for repurposing non-data scientists to apply advanced 
optimization, solvers, and discretization expertise to improve physML. 

Impact if research opportunities are addressed: 

• If physML can be developed to be as trustworthy as PDE/ODE (ordinary differential equation) 
discretization tools, it is an ideal candidate for providing the beyond forward simulation tasks and 
data assimilation necessary for DTs. 

• Existing technology does not close the loop efficiently. Potential improved performance promised by 
physML could allow for onboard smart devices with real-time sensing and feedback. 

• Engineering and physics systems have a higher threshold for reliability and trustworthiness than the 
ML counterparts. Establishing more accurate physics-informed tools will translate to DTs that can 
identify potential gains in performance and more reliable workflows. 

Summary: 

DTs require efficient and reliable numerical tools to close the loop and provide fast prediction and 
assimilation of a given system. Current modeling and simulation tools are too costly to close this gap. 
PhysML provides a means to exploit the efficiency of ML while providing some of the robustness and 
reliability of physics-based models. 
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Although promising, these models have weaknesses compared to the finite element method and the finite 
volume method models serving as the workhorses for science and engineering problems. The reliability of 
physML methods must be established before they can play a critical role in the unsupervised tasks 
necessary for DTs. 
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A.2. REQUIREMENTS AND METHODS FOR DT CONSTRUCTION  

Chair:  Samrat Chatterjee  Pacific Northwest National Laboratory (PNNL) 

Cochair:  Massimiliano (Max) Lupo-Pasini ORNL 

Participants:  Thomas Britton Jefferson Laboratory 
 Bill Spotz DOE 
 Kristopher Velazquez Lockheed Martin 
 Ravi Raveendra ESI Group 
 Jibonananda Sanyal ORNL 

Introduction: 

DTs are gaining increasing interest in the scientific community as virtual tools that provide an abstract 
representation of complex environments. The use of DTs in science would benefit experimental design 
and anomaly and failure detection/prediction to attain a certified self-reliance via an autonomous and 
continuous safety assessment.  

PhysML was recently integrated with existing domain specific applications. However, the construction 
paradigms, safety requirements, and protocols that follow DT production and deployment depend on the 
application of interest. This hinders an objective verification and validation of the DT performance and 
objective comparison of different DTs for the same goal.  

Thus, standardized terminology, protocols, and requirements are needed in the DT community to elevate 
the construction and performance evaluation of a DT above the details of a specific application.  

Guiding questions:  

• Are there standard guidelines to construct a DT that can be applied across different disciplines?  

• Are there safety checks recognized by the IoT community to guarantee that DTs are self-reliant after 
deployment? 

• Are there common paradigms that every DT is constrained to respect?  

• Are there benchmarks that are recognized in the DT community as valid pass/fail tests that certify the 
correct functioning of the DT?  

Key challenges: 

• Standardization, generalizability, and universality of DT requirements. DTs are application driven, 
and thus their construction and performance assessment are bound to the specifics of the given 
application domain. This results in a heterogeneous nomenclature, list of necessary and sufficient 
conditions, and different metrics for success across the applications, which hinders scientific advance 
in the DT community as a cross-cutting discipline. A standard terminology would benefit future 
research opportunities and collaborations. 

• Capture and address the complexity of environments. Developers should ask whether they need a 
unique DT or an ensemble of DTs with each DT focused on more specific tasks.  
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• Methods to certify DTs, including self-sustainability. Just as humans can reach success through 
several failures, the role of good-faith failure in the evaluation of the DT’s self-reliance must be 
determined.  

State of the art: 

• Specific applications have made promising progress using hybrid and ML methods. 

• ML and physics are currently integrated to generate an established groundwork by replacing agnostic 
ML models with more specific domain-driven physics models. However, DT construction and 
deployment is still very task specific. 

• Application-specific standards are emerging but are not readily transferable to blueprints, processes, 
and best practices across applications. 

• Modules are robust when used alone, but they still struggle as a cohesive system of modules. 
Integrating different DTs to generate an autonomous system of DTs raises challenges that are not 
entirely addressed (i.e., every component functioning properly as a standalone DT is not sufficient to 
guarantee that the whole system will work once the DTs are combined). 

• The real world is complex, dynamic, and uncertain, which creates challenges. There are multiple 
layers of complexity: a single task can already be complex in itself; on top of that, this complex task 
may need to be combined with more complex realities (e.g., multiagent environment) in which 
multiple DTs interact with each other and environmental variables that were not accounted for in the 
task-learning phase. 

Research opportunities: 

• Develop modular approaches (System of Systems) for DT construction. This includes modularity in 
the design stage, instead of just brute force modularity during execution. This can include object-
oriented paradigms used in programming (e.g., classes of classes, classes with multiple methods, one 
class construct can be used to characterize different things) to allow customization but still preserve a 
uniform/cross-cut paradigm. This would also favor integration of DTs that share the same structure, 
and it would reduce design costs.  

• Automated awareness with uncertainty. DTs must distinguish between anomalous behavior and the 
natural evolution of a system (e.g., a new emerging paradigm). They must discriminate and 
understand how to handle these different scenarios autonomously within allowed error. 

• Strengthen connections to meta learning (i.e., learning to learn paradigm), continual learning 
(i.e., incorporate new scenarios in the range of data previously explored), and federated learning 
(i.e., multiple replicase of the same DT are exposed to different scenarios, and the info is virtually 
shared via an outsourced server).  

• Create clear standardized definition of rules of engagement. Engineers must understand advantages 
and disadvantages between multiagent DTs (i.e., multiple versions of DTs doing different things for 
different goals) and hierarchical DTs (i.e., the top-level agent monitors the common goal, and the 
goal/task is broken down into subtasks, and each DT focuses on subtasks). 

• Create clear standardized definitions of success to determine that the DT is self-reliant and ready for 
deployment. Although different applications lead to different standards, a uniform protocol will 
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benefit transparency in terms of reproducibility of results. Standard and quantitative metrics that help 
measure success of a DT independent of the application field are also needed. 

• For example, mean-square error or F-score in statistics are very broad and still used to assess the 
predictive performance of ML models independent of the application domain. Similar measures are 
needed for DT. 

• Benchmark data sets that can be used to compare the performance of different DTs and measure 
progress and improvements of DTs are also needed. 

• Certified protocols should be created to ensure the reliability of a DT throughout its lifespan. Reliable 
DT performance one instance is not sufficient for credibility, especially when modelling complex 
phenomena. 

• Documentation standards—including a full history of failures, a clear explanation of how those 
failures were addressed during the DT design and deployment, and when self-learning and self-
correction was needed—should be investigated.  

Impact if research opportunities are addressed: 

• Heterogenous operations, including the learning of new and more complex skills with computational 
agents and transferability to learn a set of skills. 

• Outperforming current task learning with skill-based learning to perform multiple complex tasks. 

• Certifiable procedures and processes to assess performance, including reliability and robustness of 
DT, including repositories to record compliance. 

Summary: 

A cross-cut standardization is needed for the creation, deployment, and self-sustainability process that 
evaluates the performance of a DT throughout its lifespan. If attained, this would foster scientific 
advancement through a more efficient integration of DT models with existing scientific capabilities.  

Moreover, the community must develop a standard paradigm that lists the essential features that a DT 
must have, and this standard paradigm should be recognized and followed by industries and research 
institutes. Standardized terminology, procedures, and certification protocols would guarantee a clear 
reproducibility of existing results, and this would in turn foster future research and scientific progress.  

Supporting Material: 
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A.3. TIME SERIES PREDICTION FOR DIGITAL TWINS  

Chair:  Frank Liu  ORNL 

Cochairs:  Jan Drgona PNNL 
 Chetan Kulkarni NASA Ames Research Center 

Participants:  Willem Blokland ORNL 
 Alessandro Cattaneo LANL 
 Reese Jones Sandia 
 David Mascarenas LANL 
 Abhinav Saxena GE Research 

Introduction: 

Time series analysis plays a critical role in the 
development and deployment of DTs. As a 
more general notion of the DT, the models in 
the digital realm should be synchronized with 
the corresponding system in the physical realm. 
The dynamic behavior of a physical system is 
often described by streams of time series data 
collected at different rates with different 
fidelity. Time series analysis includes parsing 

and preprocessing the time series data, constructing and fine-tuning system dynamics models in the 
digital realm, and facilitating the design and tuning of the controller when active controls are needed. All 
these tasks must be carried out with the consideration of sensor noises and uncertainties, which includes 
model parameter mismatch between the digital model and the corresponding physical system as well as 
unmodelled physics in the digital model. 

The participants of this breakout session came from various DOE laboratories, NASA centers, and 
industry with broad backgrounds in applied math, ML/AI, industrial control, and high-energy physics. 
The lively discussions covered diverse topics on the state of the art in time series predictions, challenges, 
and the future research opportunities. 

Key challenges: 

• Quality and fidelity of time series data as the sensor input. Challenges include the explosive data size, 
the nonstationary nature of the data, and the sample rates required to capture the dynamic behavior of 
the physics realm, different modalities, and the jitter—especially for high-frequency sampling 
commonly used in accelerator electronics. 

• The lack of a mature theoretical framework, especially for diverse problems encountered in DTs. 

• In the same vein, there is the lack of a general application methodology (i.e., a unified method to 
deploy various ML techniques on problems). Most of the current approaches are based on trial-and-
error and ad-hoc methods. 

• A closely related challenge is how to incorporate domain knowledge in the time series prediction for 
DTs, such as causality discovery, interpretability, constraints, and symmetries.  
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• In some applications (e.g., accelerator physics, battery health prediction) the time series data 
demonstrates multiple time scales with orders of magnitude differences. Big challenges lie in how to 
store the large amounts of data on the theoretical framework for analysis and prediction. 

• In a broader sense, big challenges lie ahead in persuading the broader ML community, which is 
mostly focused on natural language processing (NLP) problems and applications in financial markets, 
of the importance of time series prediction for DTs. 

• The weak link from the time series predictions in the digital realm to the performance in the physical 
realm and back-to-the-model update. This feedback loop may also suffer long delays and was 
designed in a manual, ad-hoc fashion. 

• Better understanding of a family of generative models with theoretical guarantees on stability and 
robustness against noise and adversarial attacks. 

• Dealing with time-varying and delayed dynamical systems and distribution shifts. 

State of the art: 

• The participants concluded that the theoretical foundations are fragmented. There are several active 
research areas that can contribute to the time series prediction of DTs. The examples include 
differential equations of known physics, deep recurrent neural networks (RNNs), long short-term 
memory (LSTM), Neural ODE, and deepOpnets. Other examples include various autoregression 
models, state-space models, and probabilistic graph models. Some research advancements include 
domain decomposition methods and Koopman operators. 

• The participants also concluded that the programming environments for time series prediction do not 
have a common reference platform. On one hand, there are popular ML and statistical analysis 
environments such as Tensorflow, PyTorch, and R. On the other hand, there are domain-specific 
software environments such as Matlab/Simlink, Simpscape, Modelica, Ansys’s AGI software, and 
COMSOL Multiphysics models.  

• Methods for dealing with multiscale physics are mostly ad-hoc. 

Research opportunities: 

• Leverage rich body of existing theories (e.g., control theory, dynamic systems, information theory) to 
advance a more rigorous and coherent theoretical framework. 

• Hybrid models combining physics and data-driven methods. 

• Learning-based control to use time series prediction to facilitate and improve design and tuning of 
controllers. 

• For data processing, DT-aware data processing, especially the knowledge from domain experts and 
subject matter experts. 

• Close integration of time series prediction tools and physical simulation environments. Additional 
research to incorporate control can be also fruitful. 

• Coherent method to deal with time series prediction for multi-timescale physics. 
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Impact if research opportunities are addressed: 

• More effective systems, health management, and prognostics framework with broader impact on 
maintenance and decision support. 

• Computationally efficient DTs with performance guarantees, the capability for online continual 
learning, quantified uncertainty, and increased level of autonomy. 

• Another benefit is better industrial-grade controllers, which are easy to use and easy to tune (e.g., 
classic PID [proportional–integral–derivative controller] controllers). 

Summary: 

DTs pose unique challenges and opportunities for time series research. Some unique research questions, 
such as physics-informed modeling and effective analysis of multiscale time series data, are not actively 
pursued by the broader ML community. It is highly desirable to engage the community with a clear 
problem definition and publicly available data sets. 

On a longer time horizon, time series analysis and prediction requires successful development, 
maintenance, and deployment of analysis software—both at the centralized computing facilities and at the 
edge. Given the considerable cost of developing and maintaining a software ecosystem, it is also 
beneficial to explore and provide seed funding to mitigate the currently fragmented software ecosystem. 

Supporting Material: 
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[1] J. Guo, N. Zhao, L. Sun et al., “Modular based flexible digital twin for factory design” J Ambient 
Intell Human Comput 10 (2019): pp. 1189–1200, https://doi.org/10.1007/s12652-018-0953-6. 

[2] Lu Lu, Pengzhan Jin, and George Em Karniadakis, “Deeponet: Learning nonlinear operators for 
identifying differential equations based on the universal approximation theorem of operators,” arXiv 
preprintarXiv:1910.03193, 2019. 

[3] Maziar Raissi. “Deep hidden physics models: Deep learning of nonlinear partial differential 
equations,” in Journal of Machine Learning Research 19, no. 1 (2018): pp. 932–955. 

[4] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew 
Stuart, and Anima Anandkumar, “Fourier neural operator for parametric partial differential 
equations,” arXivpreprint arXiv:2010.08895, 2020. 

[5] Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. “A theoretical analysis of 
deepneural networks and parametric PDEs,” arXiv preprint arXiv:1904.00377, 2019. 

[6] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud, “Neural ordinary 
differential equations,” in Advances in Neural Information Processing Systems (2018):pp. 6571–
6583. 

[7] Jonas Adler and Ozan Öktem, “Solving ill-posed inverse problems using iterative deep neural 
networks,” in Inverse Problems, 33, no. 12 (2019): 124007. 

https://doi.org/10.1007/s12652-018-0953-6
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[8] Jan Drgona, Elliott Skomski, Soumya Vasisht, Aaron Tuor, and Draguna Vrabie, “Spectral Analysis 
and Stability of Deep Neural Dynamics,” arXiv:2011.13492, 2020. 
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A.4. ROBUSTNESS AND VALIDATION OF MODEL AND DIGITAL TWINS 
DEPLOYMENT 

Chairs:  David Stracuzzi  Sandia 
 Jenifer Shafer DOE/Advanced Research Projects Agency–

Energy (ARPA-E) 

Cochairs:  Svitlana Volkova  PNNL 
 Jaideep Ray  Sandia 

Participants: Matt Barone Sandia 
 Sharlotte Kramer Sandia 
 Daniel Ratner SLAC National Accelerator Laboratory 
 Maria Glenski PNNL 
 Andy Huang Sandia 
 Laura Pullum ORNL 
 
Introduction: 

For DTs to become a central fixture in mission-critical systems, a better understanding is required of 
potential modes of failure, quantification of uncertainty, and the ability to explain a model’s behavior. 
These aspects are particularly important because the performance of a DT will evolve during model 
development and deployment for real-world operations. The requirements for safety-critical DT 
systems—robustness, accountability, transparency, and fairness—are defined below: 

• Robust DTs must be resilient to variations in data inputs. 

• Accountable DTs must demonstrate reliability when applied in key circumstances and be able to 
review historical predictions and inferences (closely related to transparency). 

• Fair DTs must be equitable across representative subsets (e.g., across subpopulations of users 
impacted by DT outputs). 

• Transparent DTs must enable high-quality and correct interpretations of model behavior to identify 
points of failure through data inputs and model predictions. This can be accomplished either by 
interactive explanations of model behavior or by quantifying the predictive performance of the model. 
An example of DTs could include a combination of uncertainty quantification (UQ), out-of-
distribution analysis, and traditional performance analysis (e.g., cross-validation). 

A rigorous approach to DT validation and verification (V&V) is also required for three reasons: (1) to 
provide a basis for trust in DT adoption, (2) to reduce risk of DT backsliding, and (3) to decrease 
likelihood of accidents with a DT. DT V&V is challenging because testing standards depend on the area 
of application and the specifics of the ML approach used in the development of the DT. 

Guiding questions:  

• How is robustness defined?  

• How is validation defined? 
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• How are current definitions of robustness and validation insufficient, and how could they be 
improved?  

• What does it mean to do V&V on a DT model when some parts of the model are represented by ML 
(statistical) models whereas other parts are represented by mathematical (theoretical) models?  

• Given that ML models extrapolate statistically rather than via an explicit encoding of underlying 
physics, what are the implications for DT model development, verification, and validation?  

• What terms and methods, which are typically well-defined with respect to V&V for (equation-based) 
physics models, must be changed for ML models?  

• How does the problem change for DTs that are updated over time (i.e., DT models that are 
incrementally revised as data is collected from real systems)? 

• What are the near-term research needs to develop appropriate V&V methods? 

Key challenges: 

• Many fundamental questions about DT V&V and robustness remain open. For example, broadly 
accepted definitions of verification, validation, and robustness for DTs as well as for ML do not exist. 
The definition of V&V (i.e., safety, fairness, interpretability) varies between communities and 
provides constraints on solution space. 

• V&V is a multidimensional process that must account for robustness (including extrapolation), 
fairness, interpretability, safety, and so on. 

• Currently, it is not clear what metrics are important for DT V&V. Moreover, quantitative metrics 
might be insufficient; they must be paired with qualitative evaluation. What is the testing cadence and 
stopping criteria for DT V&V? 

State of the art: 

• Focus of DOE effort is on DT for high-consequence (aka safety-critical) systems – without effective 
V&V the adoption will not happen. 

• The literature is extensive for classical V&V and UQ, and the literature is growing for ML evaluation, 
including recent work in adversarial attacks, input perturbation, UQ for some ML models, out-of-
distribution, and training optimization, as described in detail below. 

Related work that extends the traditional evaluation of ML models to address the issues of robustness, 
accountability, fairness, or transparency of model performance consider these issues independently, as 
summarized in Table 1. DT evaluation will require the integration of multiple packages or standalone 
tools with distinct requirements, environments, or interfaces to perform a multifaceted evaluation with 
tools that often face similar limitations. For example, existing tools that address model robustness are 
largely focused on adversarial attacks (e.g., Adversarial Robustness Toolbox [ART], Advertorch, 
Foolbox, Advbox, OpenAttack, TextFooler) or gradient attacks (e.g., Foolbox). Others are also tied to a 
specific architecture framework, such as PyTorch (e.g., Advertorch), which limits the flexibility when 
applied to previously or independently developed models. 
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Table 1. Summary of existing tools for ML evaluation highlighting related work across each of the four 
dimensions of interest 

Robustness Accountability Fairness Transparency 
ART [20] 
Advertorch [7] 
Foolbox [24] 
Advbox [8] 
OpenAttack [33] 
TEAPOT [16] 
TextAttack [19] 
TextFooler [11] 

GLUE [31] 
SuperGLUE [30] 
SquAD 2.0 [23] 
ROAR [10] 

Aequitas [26] 
AI Fairness 360 [4] 
Fairlearn [5] 
Fairness Indicators [34] 

FairSight [1] 
ML-fairness-gym [35] 

Scikit-Fairness [36] 

interpretML [21] 
SHAP [13] 
Captum [12] 
LIT [29] 
TreeExplainer [14] 

Roadblocks:  

Coordinated focus of effort and funding for fundamental research. 

Research opportunities: 

• Develop broadly accepted, operational definitions of DT robustness, verification, validation, and 
fairness. The community must converge on fundamental definitions for validation, verification, 
robustness, and fairness in the context of DT in addition to specific applications and users. For 
example, in robust DT, outputs do not change drastically if the inputs are changed a little. DTs fail 
gracefully if fed nonphysical inputs. 

• Validation has no change in goal because the DT still needs to reproduce physics, though the 
associated techniques may change. Verification may entail decoupling the DT into the PDE 
component and the ML component. The PDE component would be tested just as one does today and 
then compared with exact solutions and discretization error convergence. The ML component could 
be attacked with novel methods that go beyond Local Interpretable Model-Agnostic Explanations 
(LIME) and other 1D evaluation approaches. 

• Develop qualitative approaches and quantitative metrics for evaluating DT robustness, fairness, 
interpretability, and so on. For example, robustness can be tackled with sensitivity analysis and 
validation with forward UQ, nominally, but Bayesian inverse problems may be solved to infer input 
uncertainties from other experiments. For verification, the ML piece must have at least been cross-
validated, which is standard practice, but it does not speak to predictive uncertainty, extrapolation 
ability, or safety in the field. If the ML piece is a representation of training data from high-fidelity 
simulations, explanations must be generated for the ML model (e.g., via Deep Taylor Series or 
Generalized Additive Models [collectively called Locally Interpretable Model-agnostic 
Explanations]), and it must behave something like the high-fidelity simulations. This appears to be a 
brand new topic with no publications in this area. 

• Fundamental research in UQ mathematics is required to support DT V&V. Major research questions 
include but are not limited to the following:  

o What requirements are placed on UQ for ML? 
o What constitutes a sufficient UQ evaluation of an ML model or an ensemble? There are many 

sources of uncertainty in an ML model; a complete evaluation is at least as intractable as it is for 
equation-based models. 
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o How does one combine/propagate UQ for ML components with physics equations? Forward UQ, 
nominally, but Bayesian inverse problems may be solved to infer input uncertainties from other 
experiments. 

• Fundamental research in formal methods for evaluating critical model parts and scaling these formal 
methods is needed. 

• Redesign of real-world systems to facilitate ML V&V and model development (e.g., data 
instrumentation). 

Impact if research opportunities are addressed: 

• What new scientific capabilities will be enabled? 
o Data-driven insights into physics/engineering theory 
o Precise analysis/quantification of model applicability 
o Model-driven automation of critical applications 

• What will the new methods and techniques enable? 
o Certification, validation, and robustness methods and evaluation techniques 
o Data-driven models that admit a physics-based chain of reasoning for SciML models 
o Improved accuracy of scientific models without a significant increase in computational cost 

Summary: 

Targeted continuous evaluation of DT is required to estimate the tradeoff between the risks and benefits 
of deploying DT models. To achieve this goal, the community must admit that the current ML evaluation 
process is broken [37], and because the ML component is a critical part of DT, fundamentally novel 
approaches for evaluating mission-critical DT systems are needed. 

The ubiquitous method of multifold train and validate followed by the evaluation on a final holdout test 
set assumes that the data is sampled from a distribution that represents the data that the model will see 
after deployment and during the operational phase. For several reasons, this assumption often does not 
hold. The objective of the model developer is often to evaluate the model performance, optimize 
hyperparameters, and instill the developer with confidence in the model’s performance. The focus is not 
on identifying as many modes of model failure as possible and determining how best to correct or 
mitigate them, but it should be.  

Supporting Material 

Papers: 

[1] Y. Ahn and Y. R. Lin, “Fairsight: Visual analytics for fairness in decision making,” in IEEE 
transactions on visualization and computer graphics (2019). 

[2] D. L. Arendt, “Parallel embeddings: a visualization technique for contrasting learned 
representations,” in Proceedings of the 25th International Conference on Intelligent User Interfaces 
(2020). 

[3] D. Arendt, Z. Huang, P. Shrestha, E. Ayton, M. Glenski, and S. Volkova, “CrossCheck: Rapid, 
Reproducible, and Interpretable Model Evaluation,” arXiv preprint (2020). 
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[4] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan, et al., “AI Fairness 360: An 
extensible toolkit for detecting and mitigating algorithmic bias,” in IBM Journal of Research and 
Development (2019). 
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(Microsoft, May 2020). 
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unified and generic model interpretability library for PyTorch,” arXiv preprint (2020). 

[13] S. M. Lundberg and S. I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances 
in Neural Information Processing Systems 30 (2017). 

[14] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, and S. I. Lee, “Explainable 
AI for Trees: From Local Explanations to Global Understanding,” arXiv preprint (2019). 
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[18] C. Molnar, Interpretable Machine Learning (2019). 
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A.5. DIGITAL TWINS FOR REAL-TIME CONTROL SYSTEMS  

Chair:  Christine Sweeney  LANL  

Cochairs:  Sandra Biedron Element Aero and University of New Mexico 
  Malachi Schram PNNL 

Participants:  Mariana Fazio University of New Mexico 
 Salvador Sosa Guitron University of New Mexico 
 Hong Wang ORNL 
 Christopher Mayes SLAC National Accelerator Laboratory 
 Dave Caulton Element Aero 
 Huafeng Yu Boeing  

Introduction: 

DTs are being increasingly developed for fast real-time control of complex and dynamic systems. DTs for 
this purpose have unique characteristics. Because they are deployed for real-time use, they must run fast 
and have their physical constraints met, such as being runnable where needed (possibly and including at 
the edge) with enough resources (e.g., power, bandwidth, computing performance, and storage). They 
may be part of a system of distributed control [6] or coordinated via network sensors, each of which may 
also have its own DT. They can consume data in real time for decision support and require adequate and 
relevant sensor data and sampling rates as well as somewhat predictable inputs. What is the correct 
balance of the number and type of sensors, and when is there enough data to make a reasonable 
prediction? They must be resilient in the event of data loss, corruption, variance, and/or uncertainty and 
may need backup DTs in the event of catastrophic failure. They also may be part of critical systems that 
cannot afford to use trial and error for control. The control systems that they belong to must have stopping 
conditions, and the DTs must help with detecting those.  

The DT can be implemented as a fast-running physical simulation or as an ML-based surrogate (e.g., 
using neural networks or Gaussian processes). These DTs are often specialized to provide only the 
essential information to make control decisions—they are not general purpose. If the DT is ML based, it 
may be possible to pretrain them and transfer what they have learned to production use with minimal or 
no retraining, or continuous learning may be necessary. The control workflow may have human-in-the-
loop as part of a control mechanism. Control systems that use DTs can use various forms of optimization, 
reinforcement learning (RL) [12], and adaptive control.  

Use cases for DTs for control span many areas: transportation (e.g., vehicles, aircraft, spacecraft); facility 
operations and instrumentation including robotics; computation (e.g., load balancing, cybersecurity, 
model prediction); user-level data acquisition, assimilation and experimental or observational equipment 
control; and process control (e.g., chemical, nuclear, electrical, manufacturing).  

Guiding questions:  

• What are the defining challenges for DTs for real-time control systems? 

• Where does the community stand today? 

• Where does the community want to go? 
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• What are the requirements for DTs? For example, in RL or for prediction in the design of 
experiments? 

• What are useful computational workflows for training, deploying, and updating DT-based control 
solutions using high-performance computing (HPC) resources and edge computing resources? 

Key challenges: 

• Data challenges: DTs for control have an added responsibility when considering that incoming input 
data may be missing, noisy, corrupt, or lacking sufficient metadata for comprehension. The state of 
input may be partially observable, which may limit the certainty of DT outputs. Incoming data may 
be multimodal to reflect the complex environment in which it is operating or observing. Errors in the 
incoming data may be from different sources: theory, knowledge, parameters, or sensors. Historical 
data may also not be available. Depending on the sector, there may not be comparable data available. 
For example, aircraft propulsion systems have many engines available of the same model/type that 
can enhance the data streams. This is not the case for bespoke machines for scientific discovery, but 
data could be the future for the development of near-autonomous systems such as radiation therapy.  

• Model development/design challenges: An effective strategy may be to create DTs for control that 
rely on more than one source of information to provide outputs that can guide control, including 
training data, physics-based information, and/or uncertainties. However, this may add complexity to 
the DT. The DT may need to do continuous learning, which could pose challenges to learning at the 
edge or where resources may not be readily available. Cyberattacks can be made on DTs within 
autonomously controlled systems, and preventing those must be a priority. 

• Deployment Challenges: Chief among deployment concerns discussed by the group were challenges 
with safety or performance guarantees as well as thorough validation and testing of DTs in control 
systems. Other deployment challenges include responding to changes in the physical system (e.g., a 
part is added or replaced), which may require rebuilding or modifying the DT and then testing and 
validating it again. For example, the large scale of coordination required in physical systems that have 
many sensors and require multiple controllers and/or DTs can be challenging. 

• Safety assurance challenge: Owing to the introduction of new paradigms in model-based and 
learning-based designs for control systems, a major challenge is the lack of appropriate verification, 
validation, and safety assurance technologies. Most conventional testing, verification, and simulation 
technologies do not fit well because of their limited capability, performance, and trustworthiness in 
the new designs—particularly the learning-based design. Another challenge is the lack of good 
evaluation methods and metrics that can be used as proof to build trust and confidence in certification 
and deployment.  

State of the art: 

• In general, the group felt that the state of the art is still in the early days for DTs and control. It is a 
long-term goal at this point and depends on the maturation of DTs, real-time data analytics (i.e., to 
determine state), edge computing systems, availability of sensors/data, and many other factors to 
become a mature technology. 

• Forays into DT-based control are being made, for example, in aviation, accelerators [1–6], and self-
driving cars. Several use scenarios were identified: (1) online DTs model the physical system or 
environment and provide the controller with observations, (2) DT of an entire physical system used to 
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generate data and try different control strategies, and (3) smaller control loops are used to advise 
larger simulations. 

• A sizable number of groups are working on and producing standards, especially in aviation. Standards 
are emerging for how to best test and validate these control systems and make them safe (see 
standards references below). 

Research opportunities: 

Several research opportunities for DTs exist in this area, and as noted earlier progress in control systems 
also depends on advances in components that make up the larger control workflow [7]. 

• Research is needed to make fast, hybrid or semi-physical models that are based both on data (e.g., 
trained neural network or Gaussian process models) and physics or computational models based on 
the domain. These hybrid models are needed to provide speedy and accurate predictions based on 
real-world input. Some use cases are complex enough to require multiple models within subsystems, 
so research into how to compose these and tools to aid in model composition are needed. Components 
may be at different scales and must be connected in ways that bridge scales. If uncertainties are used 
to provide robust control, they must propagate through a system of composed models. Research in 
how to represent uncertainties within such systems is needed for stochastic dynamics control in 
particular [8].  

• Research is also needed in data analytics and ML to process observations input to the DT to translate 
these to unique states and to output unique states as well, which is critical for an accurate control 
system. In addition to unique states, research on building DTs that can operate on partial information 
is also important because not all observations will be complete in a control situation. Research in 
fuzzy logic and/or neural-fuzzy [9] will help with DTs that must operate using vague or imprecise 
observations. It will be useful to develop abstractions and ontology around the types of observations 
and conditions under which the DT for control would operate. 

• Several scientific standards are emerging for autonomous control using DTs and will serve as some of 
the first of their kind for this field. Thorough revisions and reviews will be needed as these are 
developed because many of these system deployments hold significant risk if the systems 
malfunction. It is important that the standards address all aspects of testing, evaluation, and V&V, and 
novel methods will be required to do so. Data sets for bringing the systems to the standards must be 
collected or generated and made widely available. Ensuring that these data sets are representative of 
the domain will be a challenging area of research and development. 

Impact if research opportunities are addressed: 

Automatic control is key to reducing operational costs, improving efficiency, and improving data quality 
in many experimental facilities and systems. For example, expensive facilities such as particle 
accelerators can save minutes to hours on calibration and setup times. This would allow for additional 
experimental beam time as well as better data, which would better enable and accelerate scientific 
discovery. For transportation systems, automation can greatly improve safety and assurance because most 
errors are caused by humans. In the area of cybersecurity, automation can accomplish consistent vigilance 
over systems that are continually under attack, thereby ensuring security for valuable information. 
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Summary: 

DTs used in real-time control of systems have unique requirements and challenges because they are part 
of critical systems that have related constraints and risks. Several implementation methods can be used for 
these DTs, including neural networks, emulators, and/or hybrid physics models. Challenges for DTs are 
that they run in real time; cope with partial, incomplete, vague, or corrupt data; may require input from 
many sources; and may have complex or challenging deployment constraints. Currently, a few systems 
are being developed for transportation and particle accelerators. Standards are being written to govern 
testing, verification, and validation of these systems. Research is needed in the development of hybrid DT 
models, data analytics to determine accurate state information, and standards development to ensure 
systems are safe. The impact of doing this research will result in faster scientific discovery, reduced 
operational costs, improved efficiency, and added safety and security. 
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A.6. METHODS FOR CONTINUAL AND ONLINE LEARNING FOR DIGITAL TWINS 

Chair: Nurali Virani GE Research 

Cochair: Jonathan Ozik Argonne National Laboratory 
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 Achalesh Pandey GE Research 
 Phil Scruggs University of Tennessee, Knoxville (UTK) 
 Junshan Zhang Arizona State University 

Introduction: 

DT models are necessarily limited in scope (not arbitrarily accurate), and data is needed to improve 
forecasts and update parameters in several scenarios and application domains. Unlike continuous learning 
in which models are continuously updated with each new data point, continual learning systems identify 
the need for updating models, obtain suitable data, and then update models. Continual learning is needed 
to accommodate for concept drifts and input distribution shifts. Although specific approaches for 
continual learning exist, this is a wide-open research area. This section identifies a few key challenges and 
some research opportunities for continual and online learning of DTs, which can have a game-changing 
impact on current and future DT applications for design, forecasting, optimization, and control of various 
physical systems. 

Key challenges: 

• In a continual setting, a system must detect input and concept drift (including regime changes, 
anomaly/novelty detection) to determine if, when, and how to update models. 

• The models must be updated by avoiding catastrophic forgetting or enabling intentional forgetting 
based on system behaviors and environmental effects on the system. 

• Techniques are needed to handle diverse timescales for learning, which can change based on system 
dynamics, data required, and time to update models. 

• The system must infer if adequate data is available and if models have learned enough. 

• The system must determine where to update models (i.e., at the edge, in the cloud, or in HPC 
environments) based on resource constraints and data availability. 

• The system must determine how to get the correct data from the correct sources (e.g., actual 
experiments, historical data, virtual experiments, new data from existing streaming sensors, on-
demand measurements) to update models. 

• Cost and latency of edge devices doing online training and inference must be reduced for scalable 
adoption, and current learning and inference algorithms are not sufficient. 
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State of the art: 

• Condition-based or performance-based model retraining and incremental learning algorithms are 
gaining momentum. 

• Online learning in edge devices is very limited in scope because current devices primarily support 
fine-tuning of a few neural network model parameters to update models. 

• Reservoir sampling and experience replay techniques are being explored to avoid forgetting.  

• Continual learning currently focuses on updating a single model from a single data source. 
Building flexible multicomponent (i.e., multiple models and multiple data sources) continual 
learning capabilities with on-demand data gathering is difficult. 

• In some industrial settings, feature analysis is done at the edge, and models are executed and 
updated on a central server with information from extended spatiotemporal horizon. 

• Concept drift detection and anomaly detection (AD) approaches that compute the residual 
between expected and actual measurements are used for performance assessment when actual 
ground truth information is readily available. 

Research opportunities: 

• Dynamic model update mechanisms are needed that can identify and execute suitable update 
mechanisms for fine-tuning, model parameter updates, model architecture adaptation, model 
feature/sensor set adaptation, or updated data gathering. 

• Continual learning of unsupervised models that provide learned representations to track low-
dimensional manifolds, which can allow tractable control of complex systems, is needed. 

• Developing flexible and generalizable software infrastructure for learning approaches over different 
sensing and compute platforms is also needed. For example, enabling learning systems with event-
triggered workflows for simulation-as-a-service for conducting on-demand ensemble experiments for 
data generation and updating models will benefit the scientific ML community. 

• There is an opportunity to continually update models with decentralized and privacy-preserving 
collaborative learning across data silos with different levels of access restrictions as new information 
is available in different silos. 

• Although some work exists for incorporating hard or soft constraints in loss terms or in the 
architecture to include domain constraints, new work is needed to enable continual learning in the 
presence of domain constraints. 

• Learning for stochastic systems by leveraging ideas from nonlinear filtering and signal processing 
methods is another opportunity. 

• In safety-critical and other industrial systems, continual learning must be complemented with 
continual validation that can characterize error and uncertainty propagation over evolving 
multicomponent DTs to provide assurance of safety and reliability at run time. 
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• Efficient methods for learning from spatiotemporal streams are needed. 

• Algorithm development for competence monitoring (including online performance assessment) and 
out-of-distribution detection—when labels or ground truth information is not readily available—is 
needed to identify the need for updating models. 

• Multimodal learning systems that can learn from heterogenous sources of information (e.g., actual 
experiments, historical data, virtual experiments, new data from existing streaming sensors, on-
demand measurements) should be explored. 

What will be different if the research opportunities are adequately addressed? 

• More reliable, accurate, and competence-aware twins will be available. 

• If DTs can stay up-to-date and accurate, they can be used for improved just-in-time planning and 
monitoring of flexible manufacturing systems (e.g., additive manufacturing [AM]), for which the new 
normal changes frequently.  

• Because RL is a key user of continual learning approaches, better continual learning will significantly 
impact RL. For example, continual learning with domain constraints can help create RL that can 
satisfy mission, task, and safety constraints. 

• More continual learning pipelines will be accessible for scientific and engineering design applications 
(e.g., edge, HPC, and cloud) in the science and engineering community. 

• With reliable adaptive individual models, predictions for multiagent systems can become more 
accurate. 

• Scalable learning for larger networks across boundaries will also be available. 
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A.7. CONSTRUCTING DIGITAL TWINS USING HIGH-DIMENSIONAL DATA 

Chair:  Arvind Mohan  LANL 

Cochairs:  Jason St. John Fermi National Accelerator Laboratory 
(Fermilab) 
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Introduction: 

It is clear that DL can be very successful given quantities of good quality training data and/or physics 
constraints. But what happens when the data is extremely high-dimensional? This situation frequently 
occurs in 3D spatiotemporal physics (e.g.,  turbulence). Such data can often have more than 108 degrees 
of freedom. The few ML efforts that have tried learning such complex spatiotemporal data sets with large 
degrees of freedom have mostly attempted to apply more compute power. However, efficiency in DL is 
important for both time-sensitive and cost-sensitive engineering applications; computing resources are 
neither infinite nor cheap, so a better approach will be needed. How can one develop (1) more efficient 
neural networks and (2) better ways of representing large data sets so that DL does not require excessive 
computing resources? Although physics constraints and training data quality have received a lot of 
attention in DL for large spatiotemporal phenomena, considerably less attention has been paid to the 
scaling and the efficiency of neural networks. This is not merely an HPC problem, and the community 
needs fundamental algorithmic advances to truly push DL to embrace realistic engineering problems, 
however large. These difficulties can be compounded further in DTs when a simulation must be compared 
with real systems—usually with summary statistics of the two systems. Solutions range from techniques 
inspired by applied math/information sciences for a parsimonious representation of data, to incorporation 
of physics constraints in such a way that the resulting neural networks train more readily. 

Guiding questions:  

• Are there different classes of high-dimensional data?  

• Are there efforts and benchmark problems for quantifying neural network efficiency on high-
dimensional data? 

• What applications are impacted the most by high-dimensional learning and why? 

• How is the computational challenge of training overcome when input vectors are so large? 

• UQ is always an important issue for which most solutions increase computational needs. It is 
exacerbated by the computational demand of large data sets. What are some ways to effectively tackle 
this challenge? 

• How can virtual and real systems more effectively make comparisons with high-dimensional data? 

Key challenges: 

• Training ML models becomes computationally demanding and expensive for several engineering-
grade data sets because they are high-dimensional. 
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• Discussions identified two broad categories of data sets: (1) spatiotemporal physics problems (e.g., 
turbulent flows, materials physics, and data from radio astronomy) [1] and (2) sensor/instrument data 
from a large number of heterogeneous sources (e.g., particle accelerators and mega-industrial plants).  

• In addition to training neural networks, interpreting models of high-dimensional systems is also 
challenging. A common strategy is to perform preprocessing with dimensionality reduction. A key 
challenge there is deciding what information to truncate, discard, or combine. 

• How does one enforce system-wide constraints given such data sets? This is important for 
sensor/plant data in which intrinsic constraints are not readily available in the form of governing 
equations (unlike several physics problems). 

State of the art: 

• Current studies approach high-dimensional data as an HPC problem. If more compute capacity can be 
spared, then the problem will fit. This approach is unfortunately not scalable long term because 
simulation data (often used as training data sets) are reaching terabyte ranges with exascale computers 
on the horizon. The computational cost of training on these data sets can be prohibitively expensive in 
learning reduced-order models, which are often the bedrock of many DT applications. 

• On the other hand, strongly enforcing physics constraints in neural networks enable it to learn faster 
and on lesser data. This indirectly reduces the computational burden. However, explicit efforts to 
handle high dimensionality have not percolated into mainstream research. 

• Popular Sparse 1D-Operational Autoencoders are neural network autoencoders used to learn low-
dimensional representations of high-dimensional data sets, often as a preprocessing step. Although 
they are successful, they paradoxically require significant computational resources [2] to learn these 
representations. Furthermore, they suffer from typical issues of interpretability and uncertainty, which 
requires more computational effort to quantify. 

• Most simulation/experiment comparisons apply approximate Bayesian computation, which can only 
be effective with a handful of parameters. 

Research opportunities: 

• A fruitful direction of research is computing parsimonious representations of data to be fed as input to 
neural networks, as opposed to the kitchen-sink approach of deploying neural networks with tens of 
millions of parameters directly on a raw data set. This is a problem that borders on applied math and 
information sciences but is nevertheless of direct significance to the ML community. 

• Another important opportunity or goal is to enable a comparison of simulation and experimental data 
beyond just the summary statistics because this will better enable one to connect phenomena of 
differing resolutions captured by both techniques. These statistics can assist in reducing the amount of 
data required for training. 

• Processing multisensor data from thousands of sources that do not have well-defined connectivity 
information (as opposed to spatiotemporal physics) requires a different approach. Graph neural 
networks are well suited to analyze such data sets and learn connectivity + dependency information 
that is not apparent to human eyes. 
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• Despite HPC being the tool of choice for tackling high-dimensional data, there is still room to 
progress. A fruitful direction would be to quantify the practicality of mixed-precision training for 
scientific problems, especially in regression-based neural networks. Although much effort has been 
expended in classification problems, regression is trickier and predominant in science problems. 

• Likelihood-free inference using flow-based neural networks for principled comparisons between 
simulation/experiment is another opportunity. 

Impact if research opportunities are addressed: 

• Addressing these opportunities can lead to fast and cost-effective DTs for a variety of applications 
that need rapid modeling (e.g., industrial plants, space applications) under high-risk/consequence 
scenarios. 

• Improved basis identifications and data factorizations can accelerate training and reduce 
computational cost and add a significant layer of interpretability to high-dimensional data sets. 

• Parsimonious data factorizations and lower computational costs would directly benefit UQ of the ML 
models. This is especially important when using DTs for real-time or rapid decision making, for 
which multiple ensembles are required to understand uncertainty. 

• The rapidly growing field of DTs for earth and climate science applications, in which data is 
inherently high-dimensional, will be impacted significantly. 

Summary: 

Although the DT community has rightfully placed significant emphasis on developing ML algorithms that 
enforce domain-information and physics constraints, there are several constraints in deploying these 
algorithms to engineering systems of reasonable scale, given cost constraints. ML-based DT development 
would be better served if tackling high-dimensionality was not considered an afterthought to be handled 
with HPC but rather as a research problem. Dimensionality reduction has been an active area of research 
in the physics community for decades, and there are several opportunities blending it with the current 
crop of physics-based ML research. This is even more important because memory in GPUs—the common 
workhorse of the ML community—is not as cheap or widely available as CPUs, which contributes to the 
significant costs of ML training. Finally, there are several applications in earth sciences, astrophysics, and 
other large-scale problems that are firmly outside the reach of current computational capacity despite 
considerable interest in ML-based DTs. These domains will benefit significantly from advancements in 
this area. 
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van Nieuwpoort, “Deep learning assisted data inspection for radio astronomy,” Monthly Notices of the 

https://www.wkiri.com/research/papers/jones-bigdata-ieee12.pdf
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Royal Astronomical Society 496, no. 2 (August 2020): pp. 1517–1529, 
https://doi.org/10.1093/mnras/staa1412. 

  

https://doi.org/10.1093/mnras/staa1412
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A.8. CONSTRUCTING AND USING DIGITAL TWINS FOR ANOMALY DETECTION  

Chairs:  Adi Hanuka  SLAC National Laboratory 
 Jiaxin Zhang ORNL 

Participants:  Mina Sartipi University of Tennessee at Chattanooga 
 Jessica Jones Sandia 
 Hao Huang GE Global Research 

Introduction: 

AD is an important problem that has been explored within diverse research areas and application 
domains. Many AD techniques have been specifically developed for certain application domains, whereas 
others are more generic. This section provides a structured overview of research on AD. Existing 
techniques are grouped into different aspects based on the underlying approach adopted by each 
technique. For each aspect, the group identified key challenges, state-of-the-art technical methods, 
research opportunities, and impacts, which are used by the techniques to differentiate between normal and 
anomalous behavior. 

Guiding questions:  

• Are there standard guidelines for constructing an AD technique that can be applied across different 
disciplines?  

• Are there safety checks recognized by the IoT community to guarantee that AD is self-reliant after 
deployment? 

• Are there common paradigms that every AD must respect? 

• How does one reliably incorporate partial knowledge and data gaps in AD construction? 

• Are there benchmark tests that are recognized in the AD community as valid pass/fail tests that certify 
the correct functioning of the AD? 

Key challenges: 

• High frequency data/miss data, imbalanced data 

• Lack of labeled data 

• Identifying root cause from upstream data 

• Relatively mid-/long-term predictions 

• Incorporating uncertainties, reliabilities, and safety 

• Improving the robustness of prediction 

• Interpreting the anomaly—what makes it an anomaly? 
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State of the art: 

• Promising progress is being made with specific applications using advanced statistical analysis and 
DL techniques, including supervised and unsupervised methods. 

• The supervised approach requires significant effort, and the unsupervised approach relies on 
assumption and prior information. 

• Semi-supervised learning constructs a model that represents normal behavior from normal data and 
then tests the likelihood of a test instance. 

Research opportunities: 

• Data preprocessing can leverage recent advances (e.g., dimension reduction) in ML/AI to handle 
multiple data types, including time-series data, image-based data (e.g., computed tomography [CT]), 
and video data. 

• A scientific AD benchmark data set (experimental or simulation approach) for supervised 
(convolutional neural networks, RNN/LSTM, graph learning) and unsupervised (clustering analysis, 
generative adversarial network [GAN], normalizing flow) approaches is one research opportunity. 

• An opportunity exists to incorporate prior/domain knowledge in a rigorous way and improve the 
robustness given sparse data. 

Impact if research opportunities are addressed: 

• Enable the investigation of super large data sets with high frequency and high resolution. 

• Improve the prediction accuracy, efficiency, and robustness with higher confidence, specifically when 
given a sparse labeled data set. 

• Enable a fair comparison and evaluation of new AI/ML methods using a scientific benchmark data set 
instead of MNIST or imagenet. 

• Potentially extend to other scientific applications and related domains (e.g., adversarial attacks). 

Supporting Material: 

Papers:  

[1] Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, and 
Khan Iftekharuddin, “Superconducting radio-frequency cavity fault classification using machine 
learning at Jefferson Laboratory,” in Phys. Rev. Accel. Beams 23, no. 11 (November 2020): 
https://doi.org/10.1103/PhysRevAccelBeams.23.114601. 

[2] E. Fol, R. Tomás, J. Coello de Portugal, and G. Franchetti, “Detection of faulty beam position 
monitors using unsupervised learning,” in Phys. Rev. Accel. Beams 23, no. 10 (October 2020): 
https://doi.org/10.1103/PhysRevAccelBeams.23.102805. 

[3] Kevin M. Potter, Brendan Donohoe, Benjamin Greene, Abigail Pribisova, and Emily Donahue, 
“Automatic detection of defects in high reliability as-built parts using x-ray CT,” in Proceedings 

https://doi.org/10.1103/PhysRevAccelBeams.23.114601
https://doi.org/10.1103/PhysRevAccelBeams.23.102805
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Volume 11511, Applications of Machine Learning 2020, 115110O (2020): 
https://doi.org/10.1117/12.2570459. 

[4] Michael C. Krygier, Tyler LaBonte, Carianne Martinez, Chance Norris, Krish Sharma, Lincoln N. 
Collins, Partha P. Mukherjee, and Scott A. Roberts, “Quantifying the unknown impact of 
segmentation uncertainty on image-based simulations,” arXiv:2012.09913, 
https://arxiv.org/abs/2012.09913. 

  

https://doi.org/10.1117/12.2570459
https://arxiv.org/abs/2012.09913
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A.9. HARDWARE AND SOFTWARE ISSUES IN EDGE COMPUTING AND PRODUCTION 
DEPLOYMENT OF DIGITAL TWINS 

Chair:  Ron Oldfield Sandia 

Cochairs:  Iris Bahar Brown University 
 Mike Lang LANL  

Introduction: 

Computing/sensing at the edge is an important aspect of supporting DT capabilities, and the DOE 
laboratories and its partners could (and should) play an important role in evolving edge-computing 
technologies. DTs provide a virtual representation of real-world objects or environments, and it is critical 
that the real-world/physical objects interact with and inform the virtual representations, particularly in 
resource-constrained environments in which the edge systems may be limited by power, weight, 
computing capabilities, and response time, and the communication capabilities between the digital and 
physical twin might be limited by communication. Examples like this exist in DTs of experimental 
facilities, remote sensing (e.g., satellites), autonomous vehicles, and many others. 

Key challenges: 

The team identified distinctly different challenges for edge deployment depending on the DT’s phase of 
development. 

• Edge computing in DT design phase: During the design of the digital and physical twin, a key role for 
edge computing is to validate and provide confidence in the virtual representation of the device and 
inform the designers about requirements and expectations for deployed edge devices. For example, a 
DT of an autonomous vehicle may require several well-placed sensors to understand the impact of 
environmental conditions on internal systems (e.g., electronics). The DT could help determine where 
to place sensors, what data must be processed at the edge, and what data must be communicated to 
the DT. 

• Edge computing for deployment: Once in the field, requirements and constraints for edge computing 
are different than during the design phase. In particular, limitations in power/energy, communication, 
and the ability to reconfigure the system are expected, and security/privacy are much more important. 

State of the art: 

• Edge Hardware 
o The edge device (i.e., hardware) typically refers to the processing element closest to the edge 

sensor (or in some cases on the sensor). Requirements for this device depend on the type and 
volume of data captured by the sensor, the power available for processing, and communication 
and connectivity requirements between the edge device and the DT. Edge hardware is typically 
lightweight and custom. The current state of the art for the edge device design leverages devices 
like Raspberry Pi and ARM processors for prototypes and relies on custom architectures for 
deployment to meet design constraints. 

• Edge Software 
o Depending on the application, edge devices perform signal processing, data fusion, data 

reduction, data analytics/prediction, noise reduction, data labeling, and much more. In most cases, 
the edge device must be able to process, manage, and communicate results to the DT. Secure 
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computation and communication may also be required. The IoT vendors are evolving 
development environments for edge devices. Some examples include Android Things (Google), 
Predix (GE), and Azure IoT Suite (Microsoft). 

Research opportunities: 

• Hardware/sensor design 
o Opportunities exist to expand DOE investments in power-efficient, secure, and communication-

efficient hardware (e.g., quantum information science, neuromorphic hardware, reconfigurable 
computing, system-on-a-chip). 

• Robustness, security, and resilience 
o Opportunities exist to assess vulnerability and fragility of neural-network models deployed to 

edge devices.  
o Adapting to and recovering from failure, data corruption, and adversarial attacks. 
o Employing and developing algorithms for secure and robust communication and computations 

among networks of sensors (fog computing). 

• Autonomy 
o Hardware and algorithms for rapid response and in situ decision making on edge devices and 

systems.  

• Adapting to changing requirements of the DT 
o Development of agile and reconfigurable edge devices and software. How do you update 

hardware and software on a remote edge device (e.g., a satellite)? 

Impact if research opportunities are addressed: 

• Better understanding of hardware/software requirements for edge devices in support of DT. 

• Custom edge hardware designs that satisfy resource constraints and provide sufficient capability to 
support DTs. 

• Evolving approaches for improved robustness, security, and resilience in edge systems. 

• DT workflows that enable continuous updates and information exchange with the edge system. 

• Improvements to ML algorithms and continual learning approaches. 

Summary: 

Edge systems play an important role in the deployment of DTs. The DOE laboratories as well as industry 
and academic partners could play an important role in extending the state of the art through foundational 
research hardware and software for resource-constrained edge devices. Such efforts will improve the 
ability to leverage DT technology to address key issues in DOE’s science, energy, and national security 
missions. 
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Supporting Material: 

Papers: 

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” in IEEE 
Internet of Things Journal 3, no. 5 (October 2016): pp. 637–646, 
http://doi.org/10.1109/JIOT.2016.2579198. 

[2] Y. He, J. Guo, and X. Zheng, “From Surveillance to Digital Twin: Challenges and Recent Advances 
of Signal Processing for Industrial Internet of Things,” in IEEE Signal Processing Magazine 35, no. 5 
(September 2018): pp. 120–129, http://doi.org/10.1109/MSP.2018.2842228. 

[3] M. Capra, R. Peloso, G. Masera, M. Ruo Roch, and M. Martina, “Edge Computing: A Survey on the 
Hardware Requirements in the Internet of Things World,” Future Internet 11, no. 100 (2019), 
https://doi.org/10.3390/fi11040100. 

  

http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/MSP.2018.2842228
https://doi.org/10.3390/fi11040100
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A.10. SCALING AND REALIZATION OF DIGITAL TWINS ON CLOUD-AND-HPC 
SYSTEMS 

Chair:  Piyush Modi NVIDIA  

Cochair:  Sudip K. Seal ORNL  

Participants:  Sylvain Bernard Sandia  
 Nathan DeBardeleben LANL  
 Hal Finkel DOE  
 Jason Hick LANL   
 Ron Oldfield Sandia  
 Srikanth Yoginath ORNL  

Introduction:  

DTs of complex systems involve millions of industrial systems (e.g., factories, fleets of transport systems, 
power plants), billions of assets and an even larger number of subcomponents (e.g., valves, pumps) with 
which they are integrated. Hence, the ability to scale the training and inferencing workloads to build such 
DTs requires highly scalable compute infrastructure that facilitates edge processing of sensor data to 
cloud and HPC data center processing of simulation, model finding, training, inferencing, and continuous 
learning. To facilitate such workloads, orchestration stacks must evolve from traditional HPC schedulers 
to service-oriented DL/ML orchestrators based on Kubernetes (K8s) to a hyperconverged stack that 
facilitates the construction of DT and the deployment and related lifecycle management of DT models.  

Guiding questions: 

DT Definition 

• What roles do DTs play for DOE facilities, multicomponent engineered systems (e.g., detectors, 
accelerators), emerging technologies (e.g., federated instruments), and novel workflows (e.g., edge 
computing)? 

• What does scale mean in the context of DT? Is it the number of twins, training cycles, update cycles, 
simulation fidelity, simulation latency, number of users, infrastructure, number of systems, or number 
of subsystems? 

• Is a DT needed for every salient component or as one catch-all DT? 

• What is the data strategy for scalable DT? 

• How does one identify the DT compute pipeline, infrastructure, and workflow? 

• What are the appropriate development operations and ML operations in the context of a DT model 
lifecycle (training, deployment, and continuous updates)? 

DT Scale  

• Data  
o How does one identify all the data sets and their sources? 
o Where do they reside (HPC vs. big data infrastructure vs. AI training data)?  

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
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o How does one virtualize access for different users based on their needs? 
o Can a common HPC-cloud data-management infrastructure to support ingest/correlation of 

experimental and mod-sim data be established? 
o What are the best practices and processes for data ingestion and access from the cloud?  

• Workflows and Workloads 
o For DT workflows, how does one deploy multiple GPUs on single node and multinode 

workflows (potentially with multiple GPUs on each node) that are reminiscent of 
OpenMP/threads on the node and MPI/PVM off the node?  

o Can smart DT workflows be deployed that can train one model per GPU per core or share data 
between GPUs/cores or even across nodes? 

o How does one expose HPC systems to look like a cloud service?  
o How does one orchestrate an ensemble of models? 
o How does one load balance between them while maintaining efficiency? 

Key challenges:  

DT Definition  

• What are the relevant assets or processes to model?  

• What are the representation technologies to compose/orchestrate system of systems models?  

• What are the relevant objectives (AD, classification, prediction, prescription, surveillance, and 
process optimization)?  

Compute  

• How does one evolve HPC-optimized compute infrastructure and tools for AI, DL, and DT?  

• Does the scale and complexity of DT directly correspond to data required or data to be streamed?  

• How does one support HPC systems with high-bandwidth external networks (Internet2) for streaming 
data from geographically separated physical sites and DTs? This is compulsory for earth system 
processes. 

Data  

• How does one determine the relevance of data and how often to collect?  

• How does one build a scalable and fault-tolerant data storage infrastructure? 

Scale  

• How does one scale ML algorithms for training and updating DTs? 

• How does one carry out large-scale training on streaming data and/or historical data?  

• How does one execute large-scale simulations with ML model support to achieve higher accuracy?  
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• How does one construct anticipatory DT—a computational framework for AI to perform additional 
simulation runs based on the expectation of a certain high-impact event occurring in the future—and 
be able to answer/address questions for unfolding behavior caused by the high-impact event way 
ahead in time? 

• How does one deploy RL frameworks to train AI agents to perform necessary control decisions under 
low false–positive and no false–negative conditions? 

• How does one build interconnected dynamic systems able to predict single or cascading failures? 

• How does one build AI pipelines for varied DT use cases and related data and performance 
challenges, including the following? 

o Automation for data curation, augmentation, and feature engineering 
o AD 
o Future prediction (e.g., remaining useful life) 
o Scenario planning and pattern search 
o Sparse data, missing data, and UQ 
o Fidelity and latency 

State of the art:  

• DL-related benchmarks are tracked for accuracy and performance by MLPerf.org.  

• AD solutions using autoencoders and other generative techniques are being adopted, and the 
Massachusetts Institute of Technology’s (MIT’s) TADGAN is the most recent. 

• Failure prediction recurrent networks ranging from LSTM and GANs to transformers are also being 
adopted.  

• Mining domain-specific entities, summarization, and context-aware knowledge from textual data in 
the industrial environment, BERT and related NLP tools are being adopted for domain-specific 
language modeling and are being fine-tuned for various tasks. 

• Frameworks:  
o Tensorflow, PyTorch, MxNet, and RAPIDS.ai are some of the software frameworks.  
o Horovod is a meta-level platform to scale training across GPUs and nodes.  
o NVIDIA’s SimNet is evolving to facilitate physics-driven simulations augmented by neural 

networks to train physics-influenced neural networks. 
o NVIDIA Omniverse is a workbench used to assimilate data, design DT assets in simulation, 

facilitate collaboration, and facilitate deployment of DTs. 
o NVLink scales interGPU networking up to 600 Gbps. 
o Melanox Infiniband is an end-to-end high-speed Ethernet and InfiniBand interconnect solution.  
o Mellanox Rivermax uses GPUDirect for optimal data flow from network to GPU memory. 

• Hyperconvergence facilitating stacks have evolved to orchestrate DT workloads from training; 
inferencing; and active, federated, and continuous learning (e.g., Google Anthos, Amazon Outpost, 
Azure Stack, VMWare Tanzu, NVIDIA GPU Operator, K8, Helm Charts, NVIDIA NGC, 
SLURM/Singularity integration via K8 Project – WLM-Operator and related machine learning 
operations stacks). 
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• Compute technology readiness and availability 
o GCP, Azure, Amazon Clouds 
o ORNL’s Summit 
o NVIDIA DGX Superpod. 

Research opportunities:  

• Development of AI workbench tools to enable data ingestion, curation, collaboration, and 
visualization.  

• Development of HPC hardware and software stacks and computing infrastructure specifically geared 
toward deployments of DT. 

• Development of efficient scalable workflows. 

• Opportunities to combine and approximate physics with data-driven techniques.  

• Opportunities for transfer and federated learning for science.  

• Development of advanced workflows for user engagement/usability.  

• Advancements in scalable DL-aided and physics-based simulations in which DL models are either 
used to accelerate or improve model accuracy of physics-based simulations.  

• Opportunities to leverage HPC resources to meet real-time operational requirements. 

• Opportunities to leverage HPC resources to realize DT for DOE facilities (e.g., ORNL’s Spallation 
Neutron Source [SNS]) that generate large amounts of operational-specific data. 

• Advancing automated data annotation and labeling techniques and interpretable features.  

• Study of AI assurance, UQ, fraud prevention, and detection.  

Impact if research opportunities are addressed: 

• DTs and physical twins can automatically update and exchange information at scale (i.e., train, 
update, and deploy models automatically). 

• 3D visualization and interaction with physical and DT systems. 

• Ability to proactively learn what-if scenarios in anticipation of possible future events.  

• HPC-aided DT realization for large DOE facilities.  

• DT construction tools for scientists that facilitate multidisciplinary collaboration. 

Summary:  

Development and deployment of large-scale DL-based DT on cloud and HPC systems entails the 
aggregation of data sets residing in siloed infrastructure and the orchestration and streamlining of 
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compute infrastructure managed by modern ML and development operations for execution of a wide 
range of legacy and emerging algorithms. Facilitating continuous learning to maintain DT performance 
and to accurately mirror the DT’s physical counterpart is an overarching goal of DT development and 
deployment. To attain these goals, the community must have AI workbench tools that can ingest data 
from legacy systems with varied formats and can universally represent their semantics in the context of 
the physical world and associated digital world tags to trigger the execution of DT workflows. Several 
state-of-the-art tools, algorithms, and related benchmarks have been identified. They also represent 
related research opportunities for software tools, hyperconverged compute resources, storage and 
networking infrastructure, AI/DL/ML/PINN algorithms, and interactive user interfaces. Realizations of 
such scalable DTs will require the community to adopt new tools, evolve their traditional HPC workflows 
by adopting comprehensive DT design, and develop and deploy processes with emerging hyperconverged 
edge-to-cloud compute infrastructure to execute AI/DL/PINN algorithms at scale. 

DT conception, development, and deployment should be based on realistic operational needs of high-end 
scientific instruments and large-scale facilities hosted by the DOE. DTs can play a significant role in 
constantly surveilling scientific systems to track operational deviations, predict early failures, detect cyber 
intrusions, and to devise process optimizations. Facilities such as SNS, the High Flux Isotope Reactor, 
particle accelerators, and several high-end sophisticated scientific instruments can benefit from a DT-
asserted operational consistency. There are commercial off-the-shelf products that aid in DT development 
and deployment, but the type of technology to use for realizing DTs for large-scale DOE scientific 
instruments is also dependent on the system’s operational security level. 

Supporting Material: 

Papers: 

[1] Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, Ruilong Deng, “A Survey of Predictive 
Maintenance: Systems, Purposes and Approaches,” arXiv:1912.07383v1, 
https://doi.org/10.48550/arXiv.1912.07383. 

[2] Annual Conference of the Prognostics and Health Management Society 2020, virtual, November 
2020, https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-
of-the-prognostics-and-health-management-society-2020/. 

[3] Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan 
Veeramachaneni, “TadGAN: Time Series Anomaly Detection Using Generative Adversarial 
Networks,” arXiv:2009.07769, https://doi.org/10.48550/arXiv.2009.07769. 

[4] Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister, “Temporal Fusion Transformers for 
Interpretable Multi-horizon Time Series Forecasting,” arXiv:1912.09363, 
https://doi.org/10.48550/arXiv.1912.09363. 

[5] S. Yoginath et al., “On the Effectiveness of Recurrent Neural Networks for Live Modeling of Cyber-
Physical Systems” (2019 IEEE International Conference on Industrial Internet [ICII], Orlando FL, 
November 2019), https://doi.org/10.1109/ICII.2019.00062. 

[6] NVIDIA Corporation, NVIDIA DGX SuperPOD: Scalable Infrastructure for AI Leadership, RA-
09950-001, October 2021, https://images.nvidia.com/aem-dam/Solutions/Data-Center/gated-
resources/nvidia-dgx-superpod-a100.pdf. 

https://doi.org/10.48550/arXiv.1912.07383
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2020/
https://phmsociety.org/conference/annual-conference-of-the-phm-society/annual-conference-of-the-prognostics-and-health-management-society-2020/
https://doi.org/10.48550/arXiv.2009.07769
https://doi.org/10.48550/arXiv.1912.09363
https://doi.org/10.1109/ICII.2019.00062
https://images.nvidia.com/aem-dam/Solutions/Data-Center/gated-resources/nvidia-dgx-superpod-a100.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/gated-resources/nvidia-dgx-superpod-a100.pdf
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[7] K. Perumalla, S. Yoginath, and J. Lopez, “Detecting Sensors and Inferring their Relations at Level-0 
in Industrial Cyber-Physical Systems” (2019 IEEE International Symposium on Technologies for 
Homeland Security [HST], Woburn, MA, March 2019), 
https://doi.org/10.1109/HST47167.2019.9032891. 

Blog Posts: 

[8] Ian Lumb, “Introducing HPC Affinities to the Enterprise: A New Open Source Project Integrates 
Singularity and Slurm via Kubernetes,” Syslabs.io, May 7, 2019, 
https://medium.com/sylabs/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-
integrates-singularity-and-6461091c2626. 

[9] Colin Parris, “Digital Twin 2.0 and the emergence of ‘Humble AI,’” LinkedIn, January 16, 2019, 
https://www.linkedin.com/pulse/digital-twin-20-emergence-humble-ai-colin-parris/. 

[10] Amy Kover, “Humble AI Takes A Curious Turn: How Algorithms That Ask ‘Why’ Can Improve 
Wind Energy,” GE, November 18, 2019, https://www.ge.com/news/reports/humble-ai-takes-a-
curious-turn-how-algorithms-that-ask-why-can-improve-wind-energy. 

[11] Nefi Alarcon, “Accelerating Automated and Explainable Machine Learning with RAPIDS and 
NVIDIA GPUs,” NVIDIA Technical Blog, November 17, 2020, 
https://developer.nvidia.com/blog/accelerating-automated-and-explainable-machine-learning-with-
rapids/. 

Software Repositories: 

[12] “RAPIDS Notebooks,” GitHub repository, last commit February 4, 2022, 
https://github.com/rapidsai/notebooks. 

Websites: 

[13] “Time Series Analysis,” RAPIDS AI, https://medium.com/rapids-ai/tagged/time-series-analysis. 

[14] “NVIDIA TAO Toolkit,” NVIDIA, https://developer.nvidia.com/tao-toolkit. 

[15] “NVIDIA Modulus: A Framework for Developing Physics Machine Learning Neural Network 
Models,” NVIDIA, https://developer.nvidia.com/modulus. 

[16] “Machine learning innovation to benefit everyone,” ML Commons, updated December 14, 2021, 
https://mlcommons.org/en/. 

[17] “RAPIDS: Open GPU Data Science,” RAPIDS, updated February 2022, https://rapids.ai/. 

[18] “Develop with NVIDIA Omniverse,” NVIDIA, https://developer.nvidia.com/nvidia-omniverse-
platform. 

[19] “NVIDIA ISAAC: The Accelerated Platform for Robotics and AI,” NVIDIA, 
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/. 

https://doi.org/10.1109/HST47167.2019.9032891
https://medium.com/sylabs/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-6461091c2626
https://medium.com/sylabs/introducing-hpc-affinities-to-the-enterprise-a-new-open-source-project-integrates-singularity-and-6461091c2626
https://www.linkedin.com/pulse/digital-twin-20-emergence-humble-ai-colin-parris/
https://www.ge.com/news/reports/humble-ai-takes-a-curious-turn-how-algorithms-that-ask-why-can-improve-wind-energy
https://www.ge.com/news/reports/humble-ai-takes-a-curious-turn-how-algorithms-that-ask-why-can-improve-wind-energy
https://developer.nvidia.com/blog/accelerating-automated-and-explainable-machine-learning-with-rapids/
https://developer.nvidia.com/blog/accelerating-automated-and-explainable-machine-learning-with-rapids/
https://github.com/rapidsai/notebooks
https://medium.com/rapids-ai/tagged/time-series-analysis
https://developer.nvidia.com/tao-toolkit
https://developer.nvidia.com/modulus
https://mlcommons.org/en/
https://rapids.ai/
https://developer.nvidia.com/nvidia-omniverse-platform
https://developer.nvidia.com/nvidia-omniverse-platform
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
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A.11. NUCLEAR ENERGY: CHALLENGES AND APPLICATIONS OF DIGITAL TWINS  

Chair:  Prashant K. Jain  ORNL 

Cochair:  Vaibhav Yadav Idaho National Laboratory 

Participants:  Bob Ledoux US DOE, ARPA-E Program 
 Raj Iyengar US Nuclear Regulatory Commission 
 Doug Eskins US Nuclear Regulatory Commission 
 Pradeep Ramuhalli ORNL 
 Vittorio Badalassi ORNL 
 Justin Weinmeister ORNL 

Introduction: 

The purpose of this breakout session was to better understand the potential applications of DTs in nuclear 
power plant operations, identify the associated technical challenges, determine potential solutions, and 
assess the regulatory viability. In this digital and data-driven age, it is conceivable that nuclear plants 
could operate autonomously with limited or remote human interference. The primary enablers of such 
futuristic plants are 

• the advanced and comprehensive sensor network that would generate operational and system data and 
provide a data management module to manage the data,  

• a physics-based analytical backbone to analyze relevant data and render predictions, and  

• an AI or ML engine to parse through the analyses predictions to provide recommendations and take 
necessary actions.  

Guiding questions:  

• What values are expected out of DTs for a nuclear system? Where would DTs provide maximum 
benefit in the life cycle of a nuclear plant? What applications (both safety-significant and not safety-
significant) within a nuclear power plant (e.g., design, construction, operation, maintenance, and 
decommissioning) would benefit most from a DT? [The Future Value Proposition] 

• What are some major challenges in building and deploying DTs for nuclear systems? What are some 
unique needs of a compliant DT technology for nuclear applications? Are there any specific V&V 
issues associated with deploying/using DT in a regulated environment? Which of these are specific to 
ML for DT? How might these issues be addressed given the current state of the art in ML? 
[Key Challenges] 

• What are major elements within a nuclear power plant (light water and advanced reactors) for which 
developing a DT might make sense? What would be a low-hanging adoption approach for DTs in 
nuclear applications? What existing digital nuclear support systems can be evolved into standing up a 
functional DT? [State of the art] 

• Given that this is an ML for DT workshop, what are the various ways in which ML might be injected 
into the DT for nuclear applications? What bridging technologies must be developed? What should be 
the near-term (5 years) to long-term (>10 years) research focus? [Research Opportunities] 
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• Data is a key need for ML. What gaps exist concerning data needed for a robust DT for nuclear 
applications? How might these gaps be addressed? For example, what are the simulation, test beds, 
instrumented plants, sources, and data management infrastructure needs for managing data sets? Is 
there a strategy to collect and build data repositories from ongoing experimental programs? 
[Research Opportunities] 

Key challenges: 

• Interoperability (composability, scalability, heterogeneity): bridging of physics and data-driven 
ML/AI models for a range of coupled subsystems) [building twins] 

• Reliability (accuracy, predictability, assurance, explainability, interpretability) [qualifying twins] 

• Sustainability (maintainability, adaptability, robustness, reconfigurability, learnability) [deploying 
twins] 

• Security (cyber and information security, confidentiality, operational controls, safety implications of 
data breaches and hacks) [securing twins] 

State of the art: 

• DTs are gaining broader attention in the nuclear space through an emerging interest in digital 
technologies within the advanced reactors industry and with research support from the DOE ARPA-E 
Generating Electricity Managed by Intelligent Nuclear Assets program. 

• However, at present, there is a heavy reliance on empirically (experimental) observed correlations for 
design, safety, and controls purposes, with leanings toward multiphysics high-fidelity coupled 
numerical simulations.  

• Data-driven hybrid approaches will be a paradigm shift for the nuclear industry and will demand 
considerable applied R&D investments before they can be successfully adopted.  

Research opportunities: 

• Generation of synthetic and operational DT-grade data sets and methods to qualify DTs and 
establishing best practices for long-term archival DT management. 

• Development and qualification of physics-informed and data-driven surrogate models and emulators 
for nuclear design and safety with hybrid co-simulators linked to hardware in the loop.  

• Assessing the reliability of DT technologies (e.g., identifying, predicting, quantifying uncertainties), 
and analyzing the novel failure modes that DTs could potentially introduce. 

• Demonstration of early adoption on nonsafety-grade subscale systems (e.g., the power conversion 
system or feedwater control system).  

• Identify a graded approach to expand the scope of DT demonstrations beyond non-safety systems for 
nuclear assets.  

• Developing tools to visualize and make explicit relationships and dependencies among subsystems to 
provide a holistic operational viewpoint.  
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Impact if research opportunities are addressed: 

• Enhanced adoption and reliance on digital technologies within the nuclear industry; DTs could 
become a reliable training resource for the workforce (from education to operation to 
decommissioning). 

• A well-designed building information modeling–supported DT model can significantly reduce 
uncertainties in upfront construction cost and lead times for deployment of a new nuclear facility and 
its operations and maintenance. 

• Real-time remote monitoring and control and autonomous operation of nuclear (micro)reactors would 
be realized. 

• Using the DT as a novel source of regulatory information would increase safety while decreasing 
licensee regulatory burden (e.g., integrated information, more targeted regulatory activities, fewer on-
site inspections, fewer ancillary information requests).  

Summary: 

The emerging DT technology could support existing and future nuclear reactors and can play a significant 
role in reducing overall costs while improving operational safety and performance. However, there exist 
several challenges for the DT concepts in nuclear systems. One major challenge is the complexity and 
qualification of the meta-models (e.g., hybrid data-driven feedback and decisions) that are employed 
within DTs. Besides, the long-term viability of a DT is a must have for nuclear systems because of their 
long-life expectancy (40+ years). Therefore, DTs for nuclear applications must be designed for long-term 
maintenance of associated computing hardware, software, knowledge management, and cybersecurity 
framework. Interoperability and scalability of a DT is another major issue because DT combines multiple 
modeling and simulation tools (physics informed with data-driven insights) with varying degrees of 
pedigree. However, most of these challenges can be resolved through further technological advancements 
and research and with early adoption and demonstration successes. 
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A.12. DIGITAL TWIN CERTIFIED ADDITIVE MANUFACTURING  

Chair:  Aric Hagberg LANL 

Cochair:  Luke Scime ORNL 

Participants:  Garrison Flynn LANL 
 Mike Grieves Florida Institute of Technology 
 Craig Miller Ansys, Inc. 

Introduction: 

AM (additive manufacturing), or 3D printing, is a promising new manufacturing process that builds parts 
layer-by-layer. Nominally, AM is ideal for fabricating complex geometries in low to medium production 
volumes for industries such as aerospace, biomedical, energy production, and automotive. However, the 
high variability observed in the AM process, particularly in microstructure and defects, is slowing broader 
adoption within the manufacturing community.  

Because fully implemented DTs would allow each unique AM component to be modeled, the quality of 
each part could be estimated based on specific, as opposed to aggregated, data. Such an approach would 
allow individual parts to be qualified for safety-critical applications even if the AM process remains 
significantly variable. Additionally, visualizations and simulations that leverage the DT concept may go a 
long way toward establishing trust in the AM process and overcoming the cultural inertia present in many 
of the relevant industries. 

In addition to AM benefiting substantially from DTs, AM is an excellent application for the development, 
testing, and validation of new DT technologies. In particular, the layer-wise nature of the AM process 
allows for the collection of vast sums of in situ processing data that can be incorporated into a DT. 
Furthermore, the AM simulation community is extremely active (focusing on thermal, thermomechanical, 
and microstructural evolution modeling) and will be able to immediately leverage any new DT 
advancements. 

Guiding questions:  

• How can one develop confidence that a given AM component will achieve the required performance 
levels for its target application, including safety-critical applications?  

• Can sufficient and appropriate data from an AM build be identified and collected such that virtual 
modeling and simulation capabilities can be developed and used in place of physical testing? 

Key challenges: 

• AM processes experience a high degree of interpart and intrapart variability—particularly with 
respect to defect populations and microstructural features. 

• Current AM inspection processes are typically performed post-build (e.g., x-ray CT) and are 
extremely time consuming and cost prohibitive for most applications. Virtual analysis and testing 
performed on a DT model would enable increased acceptance of AM components. 

• Significant cultural inertia exists in many industries, which must first be overcome before AM can be 
used to its full potential. 
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State of the art: 

• Post-build part qualification and certification is a major expense and impediment to broader AM 
adoption. 

• Currently, the manufacturing industry only collects fairly coarse-grained data during part fabrication 
(e.g., using traveler forms). 

• Although AI can effectively analyze the massive quantities of in situ data collected during the 
process, it can be very expensive to collect ground truths for the training data (e.g., tensile tests). 

Research opportunities: 

• Adding sensors to AM machines to collect in situ process data that can be stored in a DT and 
analyzed using AI for defect detection and property prediction.  

• Enabling virtual, application-specific test to destruction by modeling the DTs and building a 
knowledge base that validates the virtual test against the physical test. 

• Leveraging DTs and AI for real-time process control and defect healing.  

• Research into material properties, material genomics, and material development. 

Impact if research opportunities are addressed: 

• Enable better design for AM to help engineers design better parts that are optimized for AM 
processing. 

• Manufacture parts that are born-qualified in small-to-medium volumes for safety-critical applications 
in regulation-intensive industries. 

• Enable most of what AM promises. 

Summary: 

The current methodology of physical testing and inspection is cost prohibitive for AM components—
particularly components that must be safety rated and produced in small quantities. DTs have the potential 
to address this issue by moving testing from the physical environment to the virtual environment. The 
least expensive and least risky inspection and testing capability is to have the information of a component 
that has been tested to destruction. Unfortunately, collecting that information renders that component 
unusable. If the specific DT that captures the required data from the AM-built component can be tested to 
destruction with the same results as testing the physical component (DT Certified), then there can be a 
high level of confidence as to the future performance of that component. This capability will require 
research and development of both in situ sensing, modeling and simulation capabilities, and a cultural 
shift in acceptance of novel testing methodologies. 
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Supporting Material: 

Papers: 

[1] T. DebRoy, W. Zhang, J. Turner, and S.S. Babu, “Building digital twins of 3D printing machines,” 
Scripta Materialia 135 (2017): pp. 119–124, https://doi.org/10.1016/j.scriptamat.2016.12.005. 

[2] Robert X. Gao, Lihui Wang, Moneer Helu, and Roberto Teti, “Big data analytics for smart factories 
of the future,” CIRP Annals 69, no. 2, (2020): pp. 668–692, 
https://doi.org/10.1016/j.cirp.2020.05.002. 

[3] D. Mies, W. Marsden, and S. Warde, “Overview of Additive Manufacturing Informatics: ‘A Digital 
Thread,’” Integr Mater Manuf Innov 5, (2016): pp. 114–142, https://doi.org/10.1186/s40192-016-
0050-7. 
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https://doi.org/10.1186/s40192-016-0050-7


 

B-1 

APPENDIX B. AIRES 2 WORKSHOP PROGRAM 

 
Artificial Intelligence for Robust Engineering and 

Science 

AIRES 2: Machine Learning for 
Robust Digital Twins 

January 19–21, 2021 
Program Committee
 
General Chair: David Womble, Oak Ridge National Laboratory (ORNL) 
Logistics and Planning Chair: Christy Hembree, ORNL 

Iris Bahar, Brown University 
Kevin Cao, Arizona State University 
Frank Liu, ORNL 
Dan Lu, ORNL 
Justin Newcomer, Sandia National Laboratories (Sandia) 
Laura Pullum, ORNL 
Pradeep Ramuhalli, ORNL 
Abhinav Saxena, GE Research 
Malachi Schram, Pacific Northwest National Laboratory (PNNL) 
Sudip Seal, ORNL 
Dali Wang, ORNL 

 



 

B-2 

 
Robust Engineering is the process of designing, building, and controlling systems to avoid or 
mitigate failures. The introductory Artificial Intelligence for Robust Engineering and Science 
(AIRES) workshop in January 2020 explored these foundations. This second AIRES workshop 
will build on the success of the first workshop to explore and develop the foundations of AI for 
constructing, deploying, and assuring the robustness of digital twins (DTs). The workshop is 
composed of three tracks. 

AGENDA 
Tuesday, January 19, 2021 

11:00–11:15 a.m. │ Welcome, Introduction, and Agenda Overview 

Jeff Nichols, ORNL 

David Womble, ORNL  

11:15–12:00 p.m. │ Keynote Speaker: Michael Grieves, Florida Institute of Technology 

 Intelligent Digital Twins: The Role of AI and ML in the Future of Digital 

Twins 

12:00–12:30 p.m. │ Break 
 

Track 1: Construction of DTs 
This track will explore the mathematical and computational aspects of using machine 
learning (ML) to construct robust models of physical systems with an emphasis on dynamical 
and complex systems. Topics of interest include but are not limited to the following: 

- Feature engineering and knowledge representation 
- Integrating time-series data for anomaly detection (AD) and trends predictions 
- Incorporating physics-based prior information 
- Developing an evolving DT through continuous learning 
- Data management 

 

Session Chair: Justin Newcomer, Sandia 
Session Cochair: Malachi Schram, PNNL 
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12:30–1:00 p.m. │ Invited Speaker 1–1: Nathan Kutz, University of Washington 
Targeted use of deep learning for physics and engineering 

1:00–1:30 p.m. │ Invited Speaker 1–2: Farinaz Koushanfar, University of California San 
Diego 
Robust and private machine learning 

1:30–1:45 p.m. │ Speaker 1–1: Eric Darve, Stanford University 
Machine learning for inverse modeling in mechanics 

1:45–2:00 p.m. │ Speaker 1–2: Luke Scime, ORNL 
Creating scalable digital twins for advanced manufacturing 

2:00–2:15 p.m. │ Speaker 1–3: Rose Yu, University of California San Diego 
Physics-guided AI for learning spatiotemporal dynamics 

2:15–2:30 p.m. │ Speaker 1–4: WaiChing Sun, Columbia University 
Microstructure-sensitivity plasticity inferred via graph neural network 

2:30–3:00 p.m. │ Break 

Session Chair: Pradeep Ramuhalli, ORNL 
Session Cochair: Iris Bahar, Brown University  

3:00–3:30 p.m. │ Invited Speaker 1–3: George Em Karniadakis, Brown University 
DeepM&Mnet: A new neural network architecture based on operator 
regression for digital twins 

3:30–3:45 p.m. │ Speaker 1–5: Piyush Modi, NVIDIA Corporation 
Tools to accelerate design, development, and deployment of digital twins 

3:45–4:00 p.m. │ Speaker 1–6: David Schmidt, University of Massachusetts Amherst 
Accelerated DL representation of turbulent, reacting flow 

4:00–4:15 p.m. │ Speaker 1–7: Jeph Wang, Los Alamos National Laboratory (LANL) 
Digital twins for x-ray and neutron cameras 

4:15–4:55 p.m. │ Breakout Sessions 

4:55–5:00 p.m. │ Day 1 Wrap-Up 
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Wednesday, January 20, 2021 

11:00–11:15 a.m. │ Day 2 Welcome and Introduction  

Track 2: Application and Deployment of DTs 
This track focuses on the practical challenges when using DTs: 

- Edge deployment for real-time and power-efficient deployment of DTs 
- Federated learning for privacy or for data reduction 
- Integrating high-performance computing (HPC) and edge systems, including model and 

data management 
- Online and offline continuous learning on edge-based systems 
- Human-machine interface design 

Session Chair: Kevin Cao, Arizona State University 
Session Cochair: Dali Wang, ORNL 

11:15–11:45 a.m. │ Invited Speaker 2–4: Felipe Viana, University of Central Florida (UCF) 
Digital twins for prognosis applications with hybrid physics-informed 
neural networks 

11:45–12:00 p.m. │ Speaker 2–8: David Stracuzzi, Sandia 
Preliminary work on a digital twin for cancer patients 

12:00–12:15 p.m. │ Speaker 2–9: Chetan Kulkarni, KBR, Inc., NASA Ames Research 
Center  
Hybrid model-based approaches for systems health management and 
prognostics 

12:15–12:30 p.m. │ Speaker 2–10: Sandra Biedron, University of New Mexico and Element 
Aero 
Experiences in dynamic systems—how we better model, understand, and 
control intelligently 

12:30–1:00 p.m. │ Break 

Session Chair: Abhinav Saxena, GE Research 
Session Cochair: Malachi Schram, PNNL 

1:00–1:30 p.m. │ Invited Speaker 2–5: Draguna Vrabie, PNNL 
Deep learning digital twins for model predictive control 

  



 

B-5 

1:30–2:00 p.m. │ Invited Speaker 2–6: Junshan Zhang, Arizona State University 
Edge intelligence in IoT ecosystems: From continual learning to 
collaborative learning 

2:00–2:15 p.m. │ Speaker 2–11: Hao Huang, GE Research 
Industrial data anomaly detection and diagnosis with variable 
association change 

2:15–2:30 p.m. │ Speaker 2–12: Jibonananda Sanyal, ORNL 
Transportation/mobility digital twin for Chattanooga 

2:30–2:45 p.m. │ Speaker 2–13: Jason St. John, Fermi National Accelerator Laboratory 
(Fermilab) 
Digital twins for the Fermilab particle accelerator complex 

2:45–3:00 p.m. │ Speaker 2–14: Abha Moitra, GE Research 
Automating construction of formal assurance case fragments 

3:00–3:30 p.m. │ Break 

3:30–4:55 p.m. │ Breakout Sessions 

4:55–5:00 p.m. │ Day 2 Wrap-Up 
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Thursday, January 21, 2021 

11:00–11:15 a.m. │ Day 3 Welcome and Introduction 

Track 3: Techniques to Provide Assurance 
This track will address issues of assuring appropriately designed, constructed, and deployed DTs with a 
level of rigor consistent with the intended use, including the level of risk. Assurance should be broadly 
interpreted to include the following: 

- Verification, validation, and calibration 
- Security and resilience 
- Uncertainty quantification (UQ) 
- Causal inference 
- Detecting and dealing with bias 
- Explainability and interpretability 

Session Chair: Dan Lu, ORNL 
Session Cochair: Sudip Seal, ORNL 

11:15–11:45 a.m. │ Invited Speaker 3–7: Nurali Virani, GE Research 
Humble AI for competence-aware digital twins 

11:45–12:00 p.m. │ Speaker 3–15: Jaideep Ray, Sandia 
Assembling training data sets for generalizable machine-learned models 
of physical phenomena 

12:00–12:15 p.m. │ Speaker 3–16: Varun Chandola, University at Buffalo 
Anomaly detection and clustering for evolving data streams 

12:15–12:30 p.m. │ Speaker 3–17: Bhavya Kailkhura, Lawrence Livermore National 
Laboratory 
Can we design assured deep learning systems? 

12:30–1:00 p.m. │ Break 

Session Chair: Iris Bahar, Brown University 
Session Cochair: Laura Pullum, ORNL 

1:00–1:30 p.m. │ Invited Speaker 3–8: Auralee Edelen, Stanford/SLAC 
Digital twins for particle accelerators at SLAC 

1:30–1:45 p.m. │ Speaker 3–18: Xueping Li, University of Tennessee (UTK) 
Maintenance Advanced Technology Initiative (MATI) 
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1:45–2:00 p.m. │ Speaker 3–19: Anthony Corso, Stanford Intelligent Systems Lab 
Adaptive stress testing for validating safety-critical autonomous systems 

2:00–2:15 p.m. │ Speaker 3–20: Aashwin Mishra, SLAC National Laboratory 
Reliable uncertainty quantification for deep learning applications in 
particle accelerators 

2:15–3:30 p.m. │ Breakout Session Out-Briefs 

3:00–3:30 p.m. │ Breakout  

3:30–4:30 p.m. │ Breakout Sessions Out-Briefs (continued) 

4:30–5:00 p.m. │ Workshop Wrap-Up and Next Steps 
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PRESENTATION INFO 
*In order of presentation 

 
Keynote Presentation 
 

Michael Grieves, Florida Institute of Technology 
Title: Intelligent digital twins: The role of AI and ML in the future of digital 
twins 
Abstract: Dr. Grieves will discuss how AI and ML will enhance the ability of DTs. He 
will discuss how DTs will evolve to adopt AI and ML in all aspects of the product 
lifecycle and share his prediction of the development trajectory that DTs are on. 
Bio: Dr. Michael Grieves is an internationally renowned expert in product lifecycle 
management (PLM) and originated the concept of the DT. His focus is on virtual product 
development; engineering; systems engineering; complex systems; manufacturing, 
especially additive manufacturing (AM); and operational sustainment. Dr. Grieves wrote 
the seminal books on PLM, Product Lifecycle Management and Virtually Perfect: 
Driving Innovative and Lean Products through PLM. He has consulted and/or done 
research at some of the top global organizations, including NASA, Boeing, Newport 
News Shipbuilding, and General Motors. 
Dr. Michael Grieves is currently at the Florida Institute of Technology in Melbourne, 
Florida, where he helped form the Center for Advanced Manufacturing and Innovative 
Design. He is currently chief scientist of advanced manufacturing, executive vice 
president of operations, and interim chief financial officer at the Florida Institute of 
Technology. 

Track 1: Construction of DTs 
 

Nathan Kutz, University of Washington 
Title: Targeted use of deep learning for physics and engineering 
Abstract: ML and AI algorithms are now being used to automate the discovery of 
governing physical equations and coordinate systems from measurement data alone. 
However, positing a universal physical law from data is challenging because (1) an 
appropriate coordinate system must also be advocated and (2) simultaneously proposing 
an accompanying discrepancy model to account for the inevitable mismatch between 
theory and measurements must be considered. A combination of deep learning (DL) and 
sparse regression, specifically the sparse identification of nonlinear dynamics (SINDy) 
algorithm, shows how a robust mathematical infrastructure can be formulated for 
simultaneously learning physics models and their coordinate systems. This can be done 
with limited data and sensors. The methods are demonstrated on a diverse number of 
examples by showing how data can maximally be exploited for scientific and engineering 
applications.  
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Bio: Nathan Kutz is the Yasuko Endo and Robert Bolles Professor of Applied 
Mathematics at the University of Washington, having served as chair of the department 
from 2007 to 2015. He earned his BS in physics and mathematics from the University of 
Washington in 1990 and a PhD in applied mathematics from Northwestern University in 
1994. He was a postdoc in the applied and computational mathematics program at 
Princeton University before taking his faculty position. He has a wide range of interests, 
including neuroscience and fluid dynamics, in which he integrates ML with dynamical 
systems and control. 

Farinaz Koushanfar, University of California San Diego 
Title: Robust and private machine learning 
Abstract: The fourth industrial revolution shaped by ML algorithms is underway. 
However, the wide-scale adoption of the emerging intelligent learning methodologies is 
hindered by security, privacy, and safety considerations in sensitive scenarios such as 
smart transportation, healthcare, warfare, and financial systems. This talk discusses recent 
progress in devising automated end-to-end algorithms, hardware, and software codesign, 
optimization, and acceleration of assured ML and privacy preserving systems. A 
summary of challenges and opportunities ahead is also included. 
Bio: Farinaz Koushanfar is the Henry Booker Scholar Professor of Electrical and 
Computer Engineering at the University of California San Diego, and the founding 
codirector of the Center for Machine Intelligence, Computing, and Security. She is a 
well-known leader in automated holistic crosslayer codesign and optimization of ML, 
security, and privacy-preserving computing. Dr. Koushanfar is a fellow of the IEEE and a 
fellow of the Kavli Foundation Frontiers of the National Academy of Engineering. She 
has received a number of awards including the Presidential Early Career Award for 
Scientists and Engineers from President Obama, the ACM SIGDA Outstanding New 
Faculty Award, Cisco IoT Security Grand Challenge Award, Massachusetts Institute of 
Technology (MIT) Technology Review TR-35, Qualcomm Innovation Awards, as well as 
Young Faculty/CAREER awards from NSF, DARPA, the Office of Naval Research, and 
the Army Research Office. 

Eric Darve, Stanford University 
Title: Machine learning for inverse modeling in mechanics 
Abstract: The Automatic Differentiation Library for Computational and Mathematical 
Engineering (ADCME) is a novel computational framework used to solve inverse 
problems involving physical simulations and deep neural networks (DNNs). By 
describing physical laws with partial differential equations (PDEs) and substituting 
unknown components with DNNs, the physics are preserved to the largest extent possible 
while leveraging DNNs for data-driven modeling. To train the DNNs within a physical 
system, ADCME expresses both numerical simulations (e.g., finite element methods) and 
DNNs as computational graphs and calculates the gradients using reverse-mode 
automatic differentiation. A system of reusable and flexible numerical simulation 
operators was built to support gradient-backpropagation for many engineering 
applications, such as seismic inversion, constitutive modeling, and Navier-Stokes 
equations. ADCME also provides a computational model for conducting large-scale 



 

B-10 

inverse modeling using MPI (Message Passing Interface) and has been deployed across 
thousands of cores. The ADCME software is open-source and available at 
https://github.com/kailaix/ADCME.jl. 
Bio: Professor Darve earned his PhD in applied mathematics at the Jacques-Louis Lions 
Laboratory in the Pierre et Marie Curie University, Paris, France. His advisor was Prof. 
Olivier Pironneau, and his PhD thesis was entitled “Fast Multipole Methods for Integral 
Equations in Acoustics and Electromagnetics.” He was previously a student at the Ecole 
Normale Supérieure, rue d'Ulm, Paris, in mathematics and computer science. Prof. Darve 
became a postdoctoral scholar with Profs. Moin and Pohorille at Stanford University and 
NASA Ames Research Center in 1999 and joined the faculty at Stanford University in 
2001. He is a member of the Institute for Computational and Mathematical Engineering. 
His research interests include numerical linear algebra, ML for engineering, high-
performance, and GPU computing. 

Luke Scime, ORNL 
Title: Creating scalable digital twins for advanced manufacturing  
Abstract: AM promises to revolutionize the manufacturing paradigm by enabling rapid 
design iteration, fabrication of lightweight components, site-specific microstructure 
control, and simplified component assembly. However, these 3D printing processes are 
relatively new, and the community does not yet have the extensive experience needed to 
understand and control the variation observed in these processes. The use of DTs and 
augmented intelligence techniques will allow rapid understanding and leveraging of these 
manufacturing processes now—without waiting decades.  
Bio: Luke Scime is an associate staff scientist in the Energy Systems Analytics group at 
ORNL’s Manufacturing Demonstration Facility. Luke earned his PhD in mechanical 
engineering from Carnegie Mellon University in 2018, and his research focuses on 
leveraging AI and computer vision techniques for AM. 

Rose Yu, University of California San Diego 
Title: Physics-guided AI for learning spatiotemporal dynamics 
Abstract: Although DL has shown tremendous success in many domains, it remains a 
grand challenge to incorporate physical principles to such models for applications in 
physical sciences. This presentation discusses (1) Turbulent-Flow Net—a hybrid 
approach for predicting turbulent flow by marrying well-established computational fluid 
dynamics (CFD) techniques with DL—and (2) Equivariant Net—a systematic approach 
to improve generalization of spatiotemporal models by incorporating symmetries into 
DNNs. The advantages of these approaches are demonstrated for a variety of physical 
systems including fluid and traffic dynamics. 
Bio: Dr. Rose Yu is an assistant professor at the University of California San Diego. Her 
research focuses on advancing ML techniques for large-scale spatiotemporal data 
analysis with applications to sustainability, health, and physical sciences. A particular 
emphasis of her research is on physics-guided AI, which aims to integrate first-principles 
with data-driven models. 
 

https://github.com/kailaix/ADCME.jl
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WaiChing Sun, Columbia University 
Title: Microstructure-sensitivity plasticity inferred via graph neural network  
Abstract: This talk will provide an overview of a geometric learning framework that 
builds interpretable macroscopic surrogate elastoplasticity models inferred from subscale 
direction numerical simulations (DNS) for polycrystalline materials. A graph 
convolutional neural network is used to deduce low-dimensional descriptors that encode 
the evolution of particle topology under path-dependent deformation and replace internal 
variables. To circumvent the lack of interpretability of the classical black-box neural 
network, a higher-order supervised ML technique is introduced to generate components 
of elastoplastic models, such as elasticity function, yield function, hardening 
mechanisms, and plastic flow. The geometrical interpretation in the principal stress space 
allows the use of convexity and smoothness to ensure thermodynamic consistency. Speed 
function from the Hamilton-Jacobi equation is deduced from the DNS data to formulate 
hardening and non-associative plastic flow rules governed by the evolution of the low-
dimensional descriptors. 
Bio: Dr. WaiChing Sun is an associate professor of civil engineering from Columbia 
University and a former research scientist at Sandia. His research focuses on data-driven 
mechanics and plasticity for crystalline, granular, and porous solids across length scales. 

George Em Karniadakis, Brown University 
Title: DeepM&Mnet: A new neural network architecture based on operator 
regression for digital twins 
Abstract: New NNs are introduced to learn functionals and nonlinear operators from 
functions and corresponding responses for system identification. The universal 
approximation theorem of operators suggests the potential of NNs in learning from 
scattered data in any continuous operator or complex system. First, the theorem is 
generalized to DNNs and subsequently applied to design (1) a new composite neural 
network with small generalization error, (2) the deep operator network (DeepONet) 
consisting of a neural network for encoding the discrete input function space (branch net), 
and (3) another neural network for encoding the domain of the output functions (trunk 
net). DeepONet demonstrably learns various explicit operators (e.g., integrals, Laplace 
transforms, fractional Laplacians) as well as implicit operators that represent 
deterministic and stochastic differential equations. More generally, DeepONets can learn 
multiscale operators that span many scales and are trained by diverse data sources 
simultaneously. Using DeepOnet as a foundation, DeepM&Mnet was designed to use 
supervised learning with only a few data to simulate complex multiscale and multiphysics 
systems. DeepM&M is demonstrated for hypersonics problems as well as a multiphysics 
electroconvection problem. 
Bio: George Karniadakis is from Crete. He received his SM and PhD from the 
Massachusetts Institute of Technology (MIT, 1984/87). He was appointed lecturer in the 
Department of Mechanical Engineering at MIT and he subsequently joined the Center for 
Turbulence Research at Stanford University and the NASA Ames Research Center. He 
joined Princeton University as an assistant professor in the Department of Mechanical 
and Aerospace Engineering and as associate faculty in the Program of Applied and 
Computational Mathematics. He was a visiting professor at Caltech in 1993 in the 
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Aeronautics Department and joined Brown University as an associate professor of 
applied mathematics in the Center for Fluid Mechanics in 1994. After becoming a full 
professor in 1996, he has continued as a visiting professor and senior lecturer of 
ocean/mechanical engineering at MIT. He is an AAAS Fellow (2018–present), Fellow of 
the Society for Industrial and Applied Mathematics (SIAM, 2010–present), Fellow of the 
American Physical Society (APS, 2004–present), Fellow of the American Society of 
Mechanical Engineers (ASME, 2003–present) and Associate Fellow of the American 
Institute of Aeronautics and Astronautics (AIAA, 2006–present). He received the 
Alexander von Humboldt award (2017), the Ralf E. Kleinman award from SIAM (2015), 
the J. Tinsley Oden Medal (2013), and the CFD award (2007) from the US Association in 
Computational Mechanics. His h-index is 105, and he has been cited over 53,500 times. 

Piyush Modi, NVIDIA Corporation 
Title: Tools to accelerate design, development, and deployment of digital 
twins  
Abstract: DTs are playing an increasingly important role in modern cyber physical 
systems by acting as a mirror of the real world to simulate, predict, and optimize 
operations of industrial assets, systems, and processes. However, building DTs at scale 
for industrial assets, systems, and processes is a daunting task. This presentation provides 
examples of tools to facilitate construction of the following: 

• Data ingestion, organization, curation, and processing pipeline that helps integrate 
data that spans the entire lifecycle (i.e., design, manufacturing, operation, and related 
logistics) of an industrial asset and systems (RAPIDS.ai) 

• Ray tracing-aided data visualization platform to render and interact with digital 
simulations of complex industrial system of systems (e.g., factories with 100s of 
facilities) (NVIDIA Omniverse) 

• Hybrid physics-informed ML models of complex systems (e.g., cumulative damage 
models of industrial assets) (NVIDIA SimNet, NVIDIA Isaac) 

• AI/ML operations to aid collaborative and continuous/federated learning, DT 
deployment, and management of a secured pipeline at scale (NVIDIA Fleet 
Command) 

These tools will be described in the context of real-world complex cyberphysical systems 
(e.g., factories, complex industrial asset condition monitoring) to generate a discussion 
about requirements and their role in accelerating research and development of DTs. 
Bio: Piyush Modi is a business development/strategist for the industrial sector at 
NVIDIA. He is actively engaged with major industrial companies and related research 
laboratories to conceive and realize industrial AI-enabled solutions. He is interested in 
real-time DL training/inferencing platforms, architecture, and related algorithms for the 
industrial use cases spanning inspection, predictive maintenance, and automation. 
Prior to NVIDIA, at Sentient.ai as a vice president of engineering, he led a team to build 
the industry’s first distributed AI (DL and Evolutionary Algorithms) platform to serve the 
model building pipeline needs for e-commerce, financial, and industrial verticals to 
harness dark compute cycles from 1,000s of GPUs available globally. Over his 20+ year 
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career, he has held positions of chief technology officer, senior vice president, and head 
of research laboratory at GE Global Research, BT, Ribbit, IP Unity, and AT&T Bell Labs 
to deliver major industry-forming outcomes by leveraging speech recognition, VOIP, 
IoT, and DL technologies. Piyush holds a PhD in electrical and computer engineering 
(speech recognition) from Rutgers University, an MS in computer science from the 
University of Tennessee, and a B.Tech. in electrical engineering from the Indian Institute 
of Technology in Varanasi, India. 

David Schmidt, University of Massachusetts Amherst 
Title: Accelerated DL representation of turbulent, reacting flow  
Abstract: A DT of an engine is only useful if the simulation cost can be reduced to a level 
at which the representation can fit into a practical design cycle. Typical CFD simulations 
of turbulent reacting flows provide high-fidelity results at an enormous computational 
cost. This team is working to accelerate these kinds of multiscale computations through a 
coarse-graining process that is cognizant of both unresolved physics and numerical 
errors. The team developed a neural ODE (ordinary differential equation) representation 
of decaying turbulence and a workflow for coupling DNNs into CFD simulations. For a 
reacting flow, a two-step process is employed that combines clustering and fitting. Both 
the turbulence and reaction models fit into a framework that respects basic conservation 
properties. 
Bio: David Schmidt is an SAE Fellow and professor of mechanical engineering from the 
University of Massachusetts Amherst. His research interests are CFD and ML. 

Jeph Wang, LANL 
Title: Digital twins for x-ray and neutron cameras  
Abstract: X-ray and neutron cameras, as well as cameras for other parts of the 
electromagnetic spectrum and particles with mass, are widely used in experimental 
science, medicine, and industry. One of the recent challenges and opportunities is the 
massive amount of scientific data generated by these devices. Many experiments can 
easily generate one terabyte of data within a few days. Although camera hardware will 
advance, as predicted by the Moore’s law, image data processing is a significant 
challenge that may require new automated approaches enabled by AI and ML. Designing 
DTs for these cameras based on integrating physics principles, materials science, data 
science, and device engineering and aiming for real-time automated image mining and 
reduction appears to be an interesting direction that has not yet been thoroughly explored. 
A broad impact is expected on many areas of fundamental and applied sciences as well as 
the well-being of society and the environment. 
Bio: Jeph Wang is a senior LANL scientist and leads a multidiscipline, multi-institutional 
collaboration on imaging instrumentation and applications. Recent work includes the 
billion-pixel x-ray camera (BiPC-X). 
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Track 2: Application and Deployment of Digital Twins 
 

Felipe Viana, UCF 
Title: Digital twins for prognosis applications with hybrid physics-informed 
neural networks 
Abstract: Dr. Viana will challenge the myth that building DTs with ML requires large 
data sets. First, he will address how physics-driven and data-driven kernels can be 
combined within DNNs. This framework, which was pioneered in the Probabilistic 
Mechanics Laboratory at the UCF, allows for a neural network to directly implement 
differential equations while accounting for uncertainty in the model form as well as 
observations. Dr. Viana will give an overview of the theoretical aspects and show 
engineering applications in DTs for failure prognosis of wind turbine main bearings, 
aircraft fuselage panels, and batteries used to power electric vehicles. 
Bio: Dr. Felipe Viana is an assistant professor at UCF, where he leads the Probabilistic 
Mechanics Laboratory. His research focuses on fusing ML and probabilistic methods 
with physics-based models for optimization and UQ. Before joining UCF, Dr. Viana was 
a senior scientist at GE Renewable Energy, where he led the development of 
computational methods for improving wind turbine performance and reliability. Prior to 
that role at GE, he spent 5 years at GE Global Research, where he led and conducted 
research on design and optimization under uncertainty, probabilistic analysis of 
engineering systems, and services engineering. Dr. Viana holds a PhD in aerospace 
engineering from the University of Florida and a PhD and MSc in mechanical 
engineering from the Federal University of Uberlandia, Brazil. 

David Stracuzzi, Sandia 
Title: Preliminary work on a digital twin for cancer patients 
Abstract: The National Cancer Institute and the US Department of Energy (DOE) have 
recently started a collaboration to develop a DT for cancer patients. Much like DTs for 
engineered systems, the goal is to model an individual patient (system) in sufficient detail 
to predict progression of the disease (mechanical flaw), the likely impact of an 
intervention, or the risk and likely timing of a subsequent adverse event. This talk 
summarizes one proposed approach to creating a DT for cancer patients, including 
discussion of several anticipated challenges associated with the data and model 
construction process. Although the team does not have results on the proposed approach, 
the described technical issues are likely to be relevant to the development of DTs for 
engineered systems. 
Bio: David Stracuzzi has been studying ML methods for over 20 years, including the past 
11 years at Sandia. His recent research emphasizes incorporating domain expertise into 
models and estimating their predictive uncertainty. 
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Chetan Kulkarni, KBR, Inc. and NASA Ames Research Center 
Title: Hybrid model-based approaches for systems health management 
and prognostics 
Abstract: To facilitate and solve the prediction problem, awareness of the current state 
and health of the system is key because it is necessary to perform condition-based system 
health predictions. To accurately predict the future state of any system, one must possess 
knowledge of its current health state and future operational conditions. Recent 
achievements of data-driven algorithms in regression of complex nonlinear functions and 
classification tasks have generated a growing interest in AI for industrial applications. 
Complex multiphysics models as well as DTs—once purely built on physics and 
corresponding and simplified lumped-parameter iterations—can now benefit from ML 
algorithms to mitigate the lack of understanding of some complex behavior. Given 
models of the current and future system behavior, a general approach of model-based 
prognostics can solve the prediction problem and further decision making. In principle, 
data-driven approaches can replace expensive experimental test setups and reduce the 
number of simulations needed for exploration (e.g., the parametric space of a 
multiparameter model). Nonetheless, the limitations of pure data-driven methods came to 
light rather quickly, at least for some industries. In many industrial areas, data acquisition 
is costly, and the volume of data that can be collected does not satisfy the requirements 
for an effective model training and cross-validation. Therefore, some recent work in ML 
focuses on blending physics with data-driven algorithms, thus mitigating the drawbacks 
of the two approaches and emphasizing respective advantages. Partial physical 
knowledge of the problem can aid the learning process by “guiding” the algorithm toward 
solutions that always satisfy the physics driving the system behavior. The result is a 
hybrid modeling approach combining physical knowledge as well data driven 
approaches. A hybrid framework for fusing information from physics-based performance 
models along with DL algorithms for prognostics of complex safety-critical systems is 
presented. In this framework, physics-based performance models infer unobservable 
model parameters related to the system components’ health, thereby solving a calibration 
problem in the DL approach. 
Bio: Chetan S. Kulkarni is a staff researcher at the Prognostics Center of Excellence, 
Intelligent Systems Division at the NASA Ames Research Center. He leads a team of 
researchers in systems health monitoring and prognostics for aeronautics and aerospace 
applications with a primary area of research in future electric UAVs and aircraft. 

Sandra Biedron, University of New Mexico and Element Aero 
Title: Experiences in dynamic systems—how a better model can help us 
understand and control intelligently 
Abstract: The team’s activities center around dynamic systems, predominantly for 
scientific inquiry, with interest in the physics-informed construction and use of DTs in 
real-time control systems. Why? Complex systems can have millions of process 
variables, change over time, and the subsystems can influence each other. Furthermore, 
on top of controlling these systems and understanding anomalies/prognostics (e.g., a 
component failing), the team also wants to analyze them in near real time. For example, 
in one immediate project funded by EPSCoR, the team wants to analyze the material 
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properties of what the tool is probing. The team actively uses the Argonne Leadership 
Computing Facility resources and is establishing a real-time connection between one of 
these analytical tool systems for control and analysis. The team will soon deploy an 
edge computing–based subsystem DT at the Facility for Rare Isotope Beams supported 
by the DOE’s Small Business Innovation Research program in Nuclear Physics. Scaling 
and realization of DL-aided DTs on cloud and HPC systems are of particular interest. 
Here, a few examples are presented of aspects of these dynamic systems, including an 
ion-based quantum information science system, particle accelerators, and the precise 
formation of a 2-CubeSats satellite system. In this way, the team hopes to share the 
progress thus far and find collaboration opportunities with other community members 
and workshop attendees to mutually enhance the goals in the deployment of DTs. 
The team is also launching a new initiative for dynamic systems led by the University of 
New Mexico with many collaborators and a major focus on education at all levels. This 
talk will also touch on much of the foundational research still needed and how that 
connects to end-use engineering. The proposed institute includes four major thrusts: 
(1) Data. How to capture information from temporal, spatial, and streaming data from 

heterogeneous sources with sparse labeling derived from large-scale, dynamical 
infrastructures.  

(2) Safety. How to provide guarantees and transparency from large-scale learning 
solutions on high-dimensional dynamic systems.  

(3) Explainability. How to capture knowledge from large-scale AI solutions for dynamic 
systems, thus providing legibility and avenues for human collaboration.  

(4) Resource Constrained. How to develop solutions that reduce the power and/or 
computational requirements, thus enabling learning and adaptability for distributed 
and dynamic applications.  

Bio: Sandra G. Biedron, PhD is a research professor of electrical and computer 
engineering in the College of Engineering at the University of New Mexico and has 
served as the chief scientist at Element Aero since 2002. She leads many research 
projects and recently served as deputy lead engineer for the integration and testing of an 
innovative naval prototype through a Boeing contract. Formerly, she was the 
US Department of Defense project office director and a physicist at Argonne National 
Laboratory and was an associate director of the Argonne Accelerator Institute. 
Dr. Biedron served as a technical and management consultant on the successful FERMI 
free-electron laser project at Sincrotrone Trieste (Italy). She is a Fellow of the APS and a 
Fellow of the SPIE optical society. In 2010, she was presented a Letter of Commendation 
by the chief of naval research for her technical efforts, and in 2013 she was honored with 
the George T. Abell Outstanding Mid-Career Faculty Award for the College of 
Engineering at Colorado State University. In 2018, she received the IEEE Nuclear and 
Plasma Sciences Society’s Particle Accelerator Science and Technology Award. Her 
interests are many and include particle accelerator systems, laser systems, the use of AI in 
controls, modelling, and prediction of complex systems, sensors and detectors, and 
applications of these technologies in science and engineering. 
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Draguna Vrabie, PNNL 
Title: Deep learning digital twins for model predictive control 
Abstract: Many real-world systems have unknown dynamics and operate in uncertain 
environments. Data-driven DL methods offer a pathway to introduce advanced control to 
complex systems in which physics-based modeling is insufficient. This talk introduces 
recent work that uses multiple methods to embed domain knowledge in DL 
representations and trains DL predictive controllers. The talk describes performance 
comparisons between DL control, traditional model-predictive control, and reinforcement 
learning (RL) methods on a classical linear time–invariant system. Finally, the talk 
outlines future research avenues. 
Bio: Draguna Vrabie is chief data scientist in the Data Sciences and Machine Intelligence 
Group, and she serves as team lead for the Autonomous Learning and Reasoning Team at 
PNNL. Her work at the intersection of control-system theory and ML aims to design 
adaptive decision and control systems. Her current focus is on DL methodologies and 
algorithms for design and operation of high-performance cyberphysical systems. Prior to 
joining PNNL in 2015, she was a senior scientist at United Technologies Research Center 
in East Hartford, Connecticut. Vrabie holds a doctorate in electrical engineering from the 
University of Texas at Arlington and an ME and BE in automatic control and computer 
engineering from Gheorghe Asachi Technical University in Iaşi, Romania. 

Junshan Zhang, University of Arizona 
Title: Edge intelligence in IoT ecosystems: From continual learning to 
collaborative learning 
Abstract: Many IoT applications demand real-time intelligent decisions. The necessity of 
real-time edge intelligence dictates that decision making takes place right here, right now 
at the network edge. Because an edge node often has a limited amount of data and is 
constrained with computational resources, continual edge learning is advocated to 
achieve edge intelligence. To this end, the team developed an edge-learning framework in 
which the edge node learns its model based on local data while leveraging the cloud 
knowledge transfer or learning from peer edge nodes.  
Bio: Junshan Zhang is a professor in the School of Electrical, Computer, and Engineering 
at Arizona State University. His current research interests are in the general field of 
information networks and data science. 

Hao Huang, GE Research 
Title: Industrial data anomaly detection and diagnosis with variable 
association change 
Abstract: Sensors on industrial systems generate multivariate time series, in which each 
sensor corresponds to one variable. During normal operation, the association 
(dependency) between variables are mainly stationary. One type of anomaly that is of 
interest relates to variable association change. Detection and diagnosis of such anomalies 
refer to pinpointing the time series and the variable associations to which the change 
relates, which helps in understanding the underlying mechanisms of anomalies. However, 
detecting such change is difficult because the variable associations are usually unknown 
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and complicated, and the anomalous samples are usually insufficient for learning the 
substandard association. This talk presents a neural network that can (1) detect this type 
of anomaly given multivariate time series as input and (2) locate the association change 
by learning the nonlinear variable associations from both normal data and the detected 
anomalies. Specifically, the approach leverages the learned model from normal data to 
learn the faulty association of the anomalies. Experiments using simulated and real-world 
industrial data sets show that the model outperforms existing methods. 
Bio: Hao Huang is an ML scientist in GE Global Research. He has 10+ years expertise in 
time series analysis, AD, and diagnosis on industrial data. 

Jibonananda Sanyal, ORNL 
Title: Transportation/mobility digital twin for Chattanooga 
Abstract: The Computational Urban Sciences Group, in partnership with the National 
Renewable Energy Laboratory and several external stakeholders, have stood up a real-
time DT focused on mobility for Chattanooga. The system has brought in 500+ real-time 
data feeds from 5 systems across 3 institutions, with at least 40 other secondary data sets. 
This has created an unprecedented opportunity to observe, anticipate, and orchestrate 
cyberphysical controls toward a 20% energy savings objective for the region. The next 
phase of this work is expanding the region of interest into Georgia and toward the nearby 
cities of Nashville and Knoxville, as well as strong collaboration with freight partners and 
the public works to apply AI-based solutions for transformational changes in 
transportation efficiency for significant energy savings. 
Bio: Jibo leads the activities of the Computational Urban Sciences group at ORNL. His 
work falls at the intersection of HPC, extreme-scale data and analytics, modeling and 
simulation, visualization, scalable ML, and sensors and controls for building both 
research and operational systems focused on complex urban systems at local, regional, 
and national scales. 

Jason St. John, Fermilab 
Title: Digital twins for the Fermilab particle accelerator complex 
Abstract: A DT was developed to capture the dynamics of the control environment of the 
gradient magnet power supply (GMPS) for the Fermilab Booster synchrotron. Using the 
DT as the environment, a multidisciplinary team successfully used RL to train a neural 
network so it can regulate the GMPS against realistic time-varying perturbations. The 
final stage of this demonstration will be to deploy the regulator network on a field-
programmable gate array (FPGA) and control the accelerator with high precision. This 
talk outlines the path forward to continuous learning on this FPGA AI GMPS regulator 
and the open questions faced along the way. 
Bio: Jason St. John is a particle physicist who is turning into a data scientist. Officially, 
he is an applications physicist at Fermilab, where he is involved in projects applying ML 
to particle accelerators. 
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Abha Moitra, GE Research 
Title: Automating construction of formal assurance case fragments 
Abstract: The ever-increasing complexity of cyberphysical systems drives the need for 
assurance of critical infrastructure and embedded systems. Building assurance cases is a 
way to increase confidence in systems. In general, the construction of assurance cases is a 
manual process, and the resulting artifacts are not machine analyzable. The High Assurance 
Systems team at GE Research is developing technology to support automated generation of 
formal assurance case fragments for systems, which are both human readable and machine 
analyzable. These assurance case fragments cover safety and security of systems. The team 
developed a Semantic Application Design Language Assurance Toolkit (SADL-AT) that 
includes a semantic model to formalize the goal structuring notation for assurance cases. 
This presentation describes the SADL-AT and demonstrates the capabilities and 
effectiveness of SADL-AT by building security and safety assurance case fragments for an 
unmanned aerial vehicle-based example—a delivery drone. The talk also describes how 
this approach can be applied to another domain. 
Bio: Abha Moitra is a principal scientist at GE Global Research. Her research interests 
include semantic modeling, knowledge representation, and reasoning as applied to 
cybersecurity, assurance cases, and manufacturing. 

Track 3: Techniques to Provide Assurance 
 

Nurali Virani, GE Research 
Title: Humble AI for competence-aware digital twins 
Abstract: To safely increase adoption of learned DTs in industry, the team proposes AI 
approaches that can characterize their own competence and reliability in individual 
predictions as well as fall back to robust baselines or ask for help when incompetent. The 
presentation outlines some ideas, results, and challenges in the creation of humble AI and 
explores how they can be used in industrial and scientific domains. 
Bio: Dr. Nurali Virani is a lead scientist in the ML team at GE Research. He is a 
multidisciplinary researcher and has led several projects, including AI-driven control of 
wind turbines, AI-driven safe control of power generation gas turbine units, 
characterizing prediction reliability of ML models, and uncertainty-aware autonomous 
navigation of ground robots. He was awarded the GE Research CTO Technology Award 
(5 Under 5) for Outstanding Research in 2018 as well as the 2019 Rudolph Kalman Best 
Paper Award by ASME. Nurali holds a PhD in mechanical engineering, an MS in 
electrical engineering, and an MS in mechanical engineering from the Pennsylvania State 
University. Dr. Virani has 30+ peer-reviewed publications as well as 3 patents. 
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Jaideep Ray, Sandia 
Title: Assembling training data sets for generalizable machine-learned 
models of physical phenomena 
Abstract: Engineering simulations rely on constitutive laws or closure models for small-
scale phenomena that are not explicitly modeled. These empirical models are the main 
source of model-form errors. Of late, these empirical models must be constructed as 
neural nets and trained on data sets obtained by pooling together a few high-fidelity 
simulations of moderate complexity. The models have been shown to capture phenomena 
that eluded engineering simulators in the past. 
This talk focuses on how one may assemble the training data set for such ML empirical 
models so that they may generalize widely. The method relies on (1) being able to cluster 
the training data set into partitions that each embody a particular type of physics and 
(2) ensuring diversity among the partitions. The clustering is performed using gaussian 
mixture models, and the specificity of clusters is limited using information-theoretic 
criteria. The method is demonstrated on a pool of four DNS (Direct Numerical 
Simulations) turbulent flow data sets that were used to train a Reynolds-averaged Navier 
Stokes closure for turbulent stresses. 
This method could be used to assemble data sets for training ML models efficiently (i.e., 
training data sets of tractable sizes that lead to widely generalizable empirical models). 
Bio: Jaideep Ray works as a staff engineer at Sandia. His research interests lie in the use 
of ML and Bayesian calibration in turbulent fluid mechanics and aerothermodynamics 
(https://www.sandia.gov/~jairay). 

Varun Chandola, University at Buffalo 
Title: Anomaly detection and clustering for evolving data streams 
Abstract: Two salient aspects of complex system behavior are self-organizing and 
emergent behavior. Monitoring the health of such complex systems requires AD methods 
that can model the self-organizing or clustering behavior and adapt to evolving and 
emergent behavior while identifying anomalies. The focus of this presentation is to 
present an extreme-value, theory-based Bayesian methodology that can identify 
anomalies and clusters in streaming data without making strict assumptions about the 
clustering structure and the nature of the anomalies. 
Bio: Varun Chandola is an associate professor at the State University of New York at 
Buffalo (UB) in the Computer Science Department and the Center for Computational and 
Data-Enabled Science and Engineering. His research covers the application of data 
mining and ML to problems involving big and complex data and focuses on AD from big 
and complex data. Before joining UB, he was a scientist in the Computational Sciences 
and Engineering Division at the ORNL. He has a PhD in computer science and 
engineering from the University of Minnesota. 
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Bhavya Kailkhura, Lawrence Livermore National Laboratory 
Title: Can we design assured deep learning systems? 
Abstract: Mission-critical applications present security and data privacy concerns and 
demand predictable behavior and strong assurance to achieve safe and correct operation. 
Unfortunately, modern ML-based systems can be easily hacked because the community 
lacks the necessary tools to make them foolproof (i.e., obtain guarantees on their 
robustness and safety). This talk presents recent progress on overcoming this drawback 
and making DL provably secure. This talk also presents the first open-source PyTorch-
compatible library to design foolproof DL models. 
Bio: Bhavya Kailkhura is a research staff member at Lawrence Livermore National 
Laboratory. His research interests are robust ML, signal processing, and optimization. He 
leads several projects in robust ML systems for high-regret applications. 

Auralee Edelen, Stanford, SLAC 
Title: Digital twins for particle accelerators at SLAC 
Abstract: The controllable settings of particle accelerators often must be adjusted to 
provide custom charged particle–beam characteristics for different applications or 
experiments. Simulation models can aid this process, but they are often either too 
computationally intensive to execute in real time or do not capture the empirical behavior 
of the accelerator accurately enough for use in control. In addition, myriad sources of 
uncertainty and changes in accelerator responses over time complicate the modeling 
process. This presentation provides an overview of progress at the SLAC National 
Accelerator Laboratory to produce online DTs for its particle accelerators, including 
deployment on the accelerator control system. 
Bio: Auralee is a Panofsky Fellow at the SLAC National Accelerator Laboratory, where 
she works on developing ML-based approaches for modeling and control of particle 
accelerators. She arrived at SLAC as a research associate in 2018. During her graduate 
studies, Auralee worked with Fermilab on early proof-of-principle studies in applying 
modern neural network–based approaches to particle accelerators. Auralee also has been 
active in the particle accelerator community for education and promotion of ML, 
including—for example—helping to organize and provide tutorials for several workshops 
on ML for particle accelerator applications. 

Xueping Li, UTK 
Title: Maintenance Advanced Technology Initiative (MATI) 
Abstract: MATI is in support of a Plant Directed Research and Development Project at 
the Y-12 National Security Complex. It focuses on an integrated approach to providing 
supporting sensor technologies and analytical tools required to support the Consolidated 
Nuclear Security-wide World Class Maintenance Organization program. The team 
developed an architecture that uses internet-based sensors and related platforms (e.g., 
IoT-enabled maintenance management system [IMMS]). IMMS is a network of physical 
equipment that contains embedded technology to communicate and sense or interact with 
their states or the surrounding environment in real time. IMMS also includes a suite of 
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software solutions as a DT embedded with ML algorithms, data visualization, and 
condition-based maintenance and predictive maintenance models. 
Bio: Dr. Xueping Li is a professor in the Department of Industrial and Systems 
Engineering at UTK. He is the director of the Ideation Laboratory (iLab) and the 
codirector of the Health Innovation Technology and Simulation Laboratory. 

Anthony Corso, Stanford Intelligent Systems Lab 
Title: Adaptive stress testing for validating safety-critical autonomous 
systems 
Abstract: Safety-critical autonomous systems require rigorous testing before deployment. 
Owing to the complexity of modern systems, formal verification may be impossible, and 
real-world testing may be dangerous and expensive during development. Simulation-based 
testing is a good alternative but requires the generation of challenging scenarios. Human-
designed test cases may not adequately cover the space of possible scenarios and might miss 
rare or emergent failures. This work presents adaptive stress testing (AST), a technique that 
uses ML to automatically discover the most likely failures of an autonomous system in 
simulation. Here, the autonomous system is treated as a black box, and RL is used to 
manipulate its environment toward challenging or critical scenarios. As demonstrated, the 
AST can be used for finding failure examples in autonomous driving and aviation domains. 
Techniques are introduced to improve the scalability of AST to large state spaces and to 
improve computational efficiency when repeatedly validating related systems. 
Bio: Anthony Corso is a 6th-year PhD student in the Aeronautics and Astronautics 
Department at Stanford University where he is advised by Professor Mykel Kochenderfer 
in the Stanford Intelligent Systems Laboratory. He studies approaches for the validation 
of safety-critical autonomous systems with an emphasis on interpretability, scalability, 
and sample efficiency. His research interests also include RL, optimization, transfer 
learning, and modeling complex dynamical systems. 

Aashwin Mishra, SLAC National Laboratory 
Title: Reliable uncertainty quantification for deep learning applications in 
particle accelerators 
Abstract: Particle accelerators find applications in a wide variety of industrial, medical, 
scientific, and security tasks. Extended time spent on tuning and control of accelerators is 
expensive because it throttles output. In this context, DNNs are increasingly applied to 
engender surrogate models and DTs for accelerator applications. However, DL-based 
models suffer from manifold sources of epistemic and aleatoric uncertainties, are prone to 
overconfident predictions for out-of-distribution samples and are vulnerable to 
adversarial attacks. Deployment in high-regret and safety-critical systems, such as 
particle accelerators, requires reliable measures of predictive uncertainty from DL 
models. This talk describes the applications of Bayesian Neural Networks (BNNs) to 
provide accurate predictions with quantified uncertainties for particle accelerator 
surrogate models. Problems are selected across different designs (e.g., storage rings, 
beam lines for free electron lasers, the LCLS-II injector) and diverse data volumes and 
formats. BNN performance is compared to extant approaches in these tasks. Finally, the 
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presentation describes the calibration of uncertainty estimates from BNNs, such that the 
interval predictions are reliable. 
Bio: Aashwin Mishra is a project scientist in the ML division at SLAC. His work focuses 
on uncertainty estimation and interpretability for DL models. 
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APPENDIX C. AIRES 2 WORKSHOP ATTENDEES 

FIRST NAME LAST NAME ORGANIZATION/AFFILIATION 
Ahmedullah Aziz University of Tennessee, Knoxville (UTK) 
Vittorio Badalassi Oak Ridge National Laboratory (ORNL) 
Iris Bahar Brown University 
Matthew Barone Sandia National Laboratories (Sandia) 
Sylvain Bernard Sandia  
Sandra Biedron University of New Mexico and Element Aero 
Willem Blokland ORNL 
Patrick Blonigan Sandia 
Thomas Britton Jefferson Laboratory 
Yu Cao Arizona State University 
Yanzhao Cao Auburn University 
Alessandro Cattaneo Los Alamos National Laboratory (LANL) 
Dave Caulton Athena Development 
Varun Chandola State University of New York at Buffalo 
Samrat Chatterjee Pacific Northwest National Laboratory (PNNL) 
Sanjay Choudhry NVIDIA 

Eric Church 
US Department of Energy’s (DOE’s) High-Energy Physics 
program 

Michael Churchill Princeton Plasma Physics Laboratory 
Jamie Coble UTK 
Matteo Corbetta KBR Inc. and NASA Ames Research Center 
Anthony Corso Stanford Intelligent Systems Lab at Stanford University 
Eric Darve Stanford University 
Warren Davis Sandia 
Nathan DeBardeleben LANL 
Jan Drgona PNNL 
Eden Eager Sandia 
Auralee Edelen Stanford and SLAC National Accelerator Laboratory 
Stephan Eidenbenz LANL 
John Emery Sandia 
David Etim National Nuclear Security Administration 
Katherine Evans ORNL 
Mariana Fazio University of New Mexico 
Hal Finkel DOE Advanced Scientific Computing Research 
Garrison Flynn LANL 
Michael Ford Argonne National Laboratory (Argonne) 
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FIRST NAME LAST NAME ORGANIZATION/AFFILIATION 
Ari Frankel Sandia 
Christopher Garasi Sandia 
Gerald Geernaert DOE 
Brian Giera Lawrence Livermore National Laboratory (LLNL) 
Maria Glenski PNNL 
Humberto Godinez LANL 
Michael Grieves Florida Institute of Technology 
Aric Hagberg LANL 
Zhizhong Han The University of Maryland, College Park 
Adi Hanuka SLAC National Laboratory and Stanford 
Dirk Hartmann Siemens 
Christy Hembree ORNL 
Jason Hick LANL 
Nicki Hickmon Argonne 
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